

2-Axis Laser Beam Deflection Units

SUPERSCAN II-10 SUPERSCAN II-15 SUPERSCAN II-15 ENHANCED SUPERSCAN II-20 SUPERSCAN II-30

SUPERSCAN II-HS-15 SUPERSCAN II-HS-15 ENHANCED SUPERSCAN II-HS-20 SUPERSCAN II-HS-30

This manual has been compiled by RAYLASE for its customers and employees.

RAYLASE reserves the right to change the product described in this manual and the information contained therein without prior notice.

The software included in the product and this manual itself are protected by copyright. All rights are reserved. Duplication of this manual in whole or in part, particularly by photocopying, scanning or imaging, and reproduction by any means are forbidden without the prior, written consent of RAYLASE.

CONTENTS

1	BASIC SAFETY INSTRUCTIONS	4
1.1	Laser safety	4
1.2	Laser shutter	4
1.3	Signs	4
1.4	Classification of laser devices	
1.5	Laser area	
2	BASIC INFORMATION	7
2 .1	Introduction	
2.2	Package contents	
2.3	Module overview	
2.4	Warranty	
2.5	Manufacturer	
2.6	Customer support	
2.7	Status LEDs.	
2.1	Oldido LEDo	
2	TECHNICAL DATA	44
3 3.1		
3.1 3.2	Conformity with directives	
3.2.1	Rating plate codeSUPERSCAN II	
3.2.1	SUPERSCAN II	11
_		
4	FUNCTIONAL DESCRIPTION	
4.1	Laser beam deflection unit	
4.2	F-Theta lens	
4.3	Analog interface	
4.4	Digital interface	
4.5	Power supply	16
5	INSTALLATION	17
6	CLEANING	
6.1	Cleaning the housing	
6.2	Cleaning the optical system	
6.2.1	Instructions for cleaning lenses and glass guards	
6.2.2	Instructions for cleaning mirrors	
6.2.3	Special instructions for zinc selenide optical elements	19
7	MAINTENANCE	21
•	TROUBLESUOOTING	00
8	TROUBLESHOOTING	22
0	ADDENDIY	25

1 BASIC SAFETY INSTRUCTIONS

1.1 Laser safety

The user is responsible for safe operation and for safeguarding the surrounding area against hazards that can be caused by laser radiation. OEM customers must ensure compliance with all local and national regulations.

1.2 Laser shutter

The deflection unit is designed to deflect an input laser beam and output it again. The deflection unit cannot block or weaken the laser beam. To prevent unwanted emission of the laser beam, above a particular danger class the laser device must be fitted with a shutter (\Rightarrow page 5, Classification of laser devices).

The laser device must be of sufficient quality that the laser beam can only be emitted at the beam output on the deflection unit.

1.3 Signs

The following signs must be attached to the deflection unit. These signs may not be removed. Signs that have become illegible must be replaced.

Rating plate

The rating plate and the identification code printed on it allow the type of the deflection unit to be determined (⇒ page 11, **Rating** plate code). The serial number and the item number are also used to identify the deflection unit.

The **CE symbol** confirms the deflection unit's compliance with European directives. It indicates that the deflection unit is approved for free trade within the EU.

The **seal label** warns against unauthorized opening of the deflection unit. If the seal is broken, all warranty claims against RAYLASE are void.

At the point where laser radiation is emitted, a **laser warning sign** must be attached. It provides information about the type of radiation, specific hazards and the degree of protection. The laser warning sign is attached by the OEM customer in accordance with the laser device's classification (⇒ page 5, Classification of laser devices).

1.4 Classification of laser devices

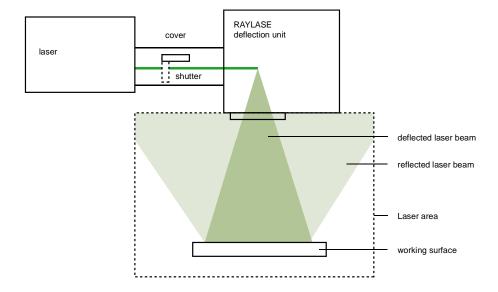
The deflection unit can be fitted on various laser devices. Every laser device is assigned to a particular danger class, which must be specified at the point where laser radiation is emitted, e.g. using a warning sign. The following classifications are defined in DIN EN 60825-1:

Class	Description
1	The accessible laser radiation is not dangerous under reasonable foreseeable conditions.
1M	The accessible laser radiation is in the wavelength range of 302.5 to 4,000 nm. The accessible laser radiation is not dangerous to the eyes, as long as the cross-section is not reduced by optical instruments (magnifying glasses, lenses, telescopes).
2	The accessible laser radiation is in the visible spectrum (400 to 700 nm). Short-term exposure (up to 0.25s) is not dangers to the eyes. Additional radiation components outside the wavelength range from 400-700 nm meet the requirements for class 1.
2M	The accessible laser radiation is in the visible spectrum from 400 to 700 nm. Short-term exposure (up to 0.25s) is not dangerous to the eyes, as long as the cross-section is not reduced by optical instruments (magnifying glasses, lenses, telescopes). Additional radiation components outside the wavelength range from 400-700 nm meet the requirements for class 1M.
3R	The accessible laser radiation is in a wavelength range of 302.5 to 10,600 nm and is dangerous to the eyes. The power or energy is a maximum of five times the limit for permissible class 2 radiation in the wavelength range from 400 to 700 nm.
3B	The accessible laser radiation is dangerous to the eyes and frequently to the skin.
4	The accessible laser radiation is extremely dangerous to the eyes and dangerous to the skin. Even diffuse scattered radiation can be dangerous. The laser radiation can cause fires or a risk of explosion.

Note: Bear in mind that the deflection unit changes the position at which the beam is emitted and the new beam output must be marked with a warning sign showing the appropriate classification.

Note: The deflection unit can change the classification of the laser device, particularly if it is fitted with a focusing lens. The laser device may require additional protective equipment as a result.

1.5 Laser area


For the purposes of accident prevention, the laser area is defined as the area in which the maximum permitted radiation value can be exceeded. This is generally applicable for class 3B, 3R and 4 lasers. For class 1 to 2M laser devices, a laser area can be produced by focusing the laser beam.

A sufficient beam intensity produces a laser area that covers the entire radiation angle of the deflection unit and includes the reflection from all objects that can be exposed to the radiation as a result. Note that even apparently diffuse surfaces can reflect laser radiation and a laser beam that has been reflected several times can still be dangerous.

The laser area must be indicated by corresponding warning signs or lamps and protected by appropriate shading and interlock switches.

No flammable or explosive objects or liquids should be located in the laser area.

This operating manual interprets a selection of accident prevention regulations from the point of view of using laser deflection units in industrial plants. However, the applicable local and national standards, rules and regulations are binding.

2 BASIC INFORMATION

2.1 Introduction

Chapters 1 to 8 of this operating manual describe the general handling of deflection units from the following series: SUPERSCAN II and SUPERSCAN II-HS. Appendix A lists the different features. For details of the type you are using, refer to the rating plate.

This operating manual contains important information on qualified and safe handling of the deflection unit. You should therefore familiarize yourself with the content of this manual before using the deflection unit for the first time. In case of any queries, please contact RAYLASE.

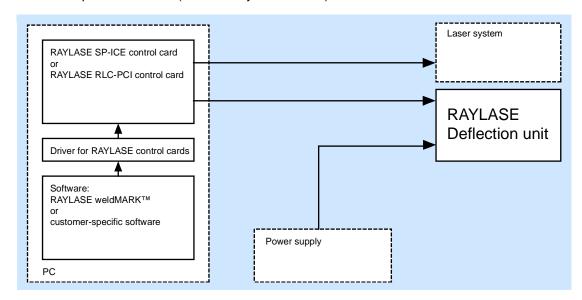
The operating manual must be accessible to anyone who will be involved in developing, installing or using a laser device featuring the RAYLASE deflection unit. If the deflection unit is sold on, this operating manual or an authorized copy must be passed on with it.

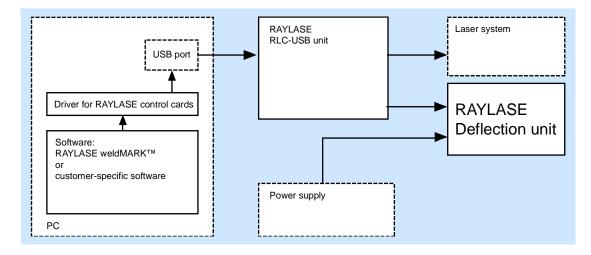
2.2 Package contents

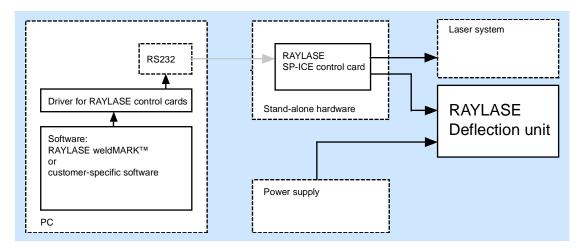
Standard:

Deflection unit

Optional:


- F-Theta lens, glass guard
- Control card
- Connecting cable between control card and deflection unit
- Software package


Chapter 2 Basic information


2.3 Module overview

The illustration below shows three typical laser devices that are realized using RAYLASE and customer-specific modules (indicated by dotted lines).

Fig. 1 Module overview

2.4 Warranty

The rights of the customer in respect of any defects in quality or deficiencies in title are governed by the general conditions of business of RAYLASE AG. These conditions are available for review on our website.

Before returning the product, please request an authorization number from RAYLASE. Pack the product in the original packaging or in packaging that provides equivalent protection for shipping.

RAYLASE shall not be obliged to repair defects under the following circumstances:

- If persons not authorized by RAYLASE have attempted to repair the product.
- If persons not authorized by RAYLASE have modified the product.
- If the product has been used improperly.
- If the product has been connected to incompatible devices.
- If the product has been damaged because of inadmissible high laser power or focusing the laser on optical areas.
- If the product has been damaged because of unqualified cleaning of the optical areas.
- If the warranty period is expired.

Note: No implicit guarantee or warranty of suitability for specific purposes has been made. RAYLASE is not responsible for damages arising from use of the product. Individual assemblies or other assemblies manufactured by RAYLASE may be subject to separate warranty conditions. Refer to the corresponding manuals for further information.

2.5 Manufacturer

RAYLASE AG Argelsrieder Feld 2+4 82234 Wessling Germany

Tel.: +49 (0) 81 53 - 88 98 - 0 Fax: +49 (0) 81 53 - 88 98 - 10

http://www.raylase.de E-mail: info@raylase.de

2.6 Customer support

The RAYLASE support services are available for your problems either in respect to the deflection unit or this manual. Before calling for support, please make sure you refer to any appropriate sections in the manuals on the supplied CD that may answer your questions.

If you need further assistance call RAYLASE customer service department, Monday through Friday between 8 A.M. and 5 P.M. (Middle European Time).

The customer service personnel will be able to give you direct assistance and answers to your questions.

Germany (Wessling) +49 (0) 81 53 - 88 98 - 0 E-Mail: support@raylase.de

... ask for the customer service department

Chapter 2 Basic information

2.7 Status LEDs

The status LEDs allow you to check important functions and statuses on the deflection unit. They are located on the front or on the top of the deflection unit (depends on type).

LED arrangement		Name	Color	Meaning			
	D7	D11	D1	Red	CLK fault		
D3	D5	D9	D2	Red	Parity fault X	Data transmission faulty. Cable defective.	
D1 D2	D4	D8	D3	Red	Parity fault Y	Cable delective.	
DZ	D6	D10	D4	Green	Temp. status X	Temperature status available if	
			D5	Green	I FDs are lit		
			D6	Orange	New data X Transfer new data if status		
			D7	Orange	New data Y LEDs are lit.		
			D8	Red	Fault X Galvanometer scanner or		
			D9	Red	Fault Y	driver electronics defective. Power supply defective if status LEDs are flickering.	
		D10	Green	+VCC	Power supplies available if		
			D11	Green	-VCC	LEDs are lit.	

Technical data Chapter 3

3 TECHNICAL DATA

This section outlines the common features of all deflection units. For type-specific features, refer to the data sheets in the Appendix. The individual data is assigned by the rating plate on the deflection unit and by the identification code (⇒ below, Rating plate code).

3.1 Conformity with directives

The deflection unit conforms to the requirements of the following directives:

- EU Directive 2004/108/EG or German law on electromagnetic compatibility (EMVG)
- EU Directive 2002/95/EC or German law on electrical equipment (ElektroG)
- Directive 2006/42/EC on machinery
- For details of conformity with other directives, contact RAYLASE.

3.2 Rating plate code

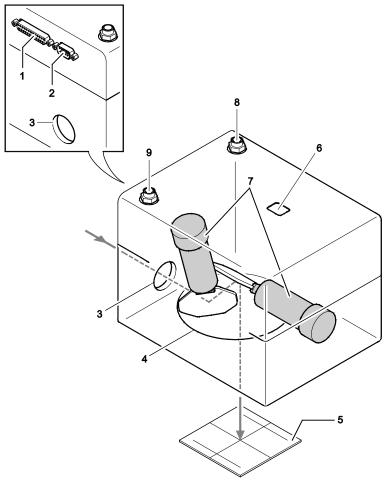
The type designation on the rating plate allows you to assign the deflection unit to the appropriate data sheet in the Appendix. The data sheet contains the specific data for the unit.

3.2.1 SUPERSCAN II

The following key is used on the label of SUPERSCAN II series.

```
Type designation
              SUPERSCAN II
SS-II
SS-II-LD
              SUPERSCAN II Low Drift
SS-II-AC
              SUPERSCAN II Auto Calibration
SS-TT-HS
              SUPERSCAN II High Speed
SS-II-HS-LD
              SUPERSCAN II High Speed, Low Drift
              SUPERSCAN II High Speed, Auto Calibration
SS-II-HS-AC
SS-IIE-LD
              SUPERSCAN II Enhanced Low Drift
SS-IIE-HS
              SUPERSCAN II Enhanced High Speed
SS-IIE-HS-LD
              SUPERSCAN II Enhanced High Speed, Low Drift
  Apertur [mm]
     Coating code
                   Wavelength [nm] ..... Laser
                   180-700 ..... UV laser
    ΤY
                   355 ..... Nd: YAG tripled
    AG
                   400-1064 ..... various
                   488-514 ..... Argon ions
    AR
                   532 ..... Nd: YAG doubled
    DY
                   532 & 1064 ..... various
                   780-980 ..... LEDs
850-870 & 1064 .... Nd:YAG
     780-980nm
     Y + (850 - 870)
     915+975nm
                   915 & 975 ..... LEDs
     975
                   975 ..... LEDs
                   1064 ..... Nd:YAG
                   10600 ..... CO2
    ΑU
                   10600 ..... CO2
       Tuning/Version
       LN Low noise Tuning
          Short acceleration time tuning
          Version
          Interface type
                Digital interface with 25-pin D-SUB connector
          Dig1
          Dig2
               Digital interface with 9-pin and 25-pin D-SUB connector
                Analog interface
            Additional or customer code
XX-XX[XX]XX XX/X
```

Note: In addition to the coatings listed above, all mirrors have a deflection coating for a wavelength of 633nm.


Chapter 4 Functional description

4 FUNCTIONAL DESCRIPTION

4.1 Laser beam deflection unit

The deflection unit can be used to deflect a laser beam in X and Y directions. This produces an area within which a laser can be directed at any position. This area is known as the "marking field" and is shown in Fig. 2. Deflection is performed by two mirrors, each of which is moved by a galvanometer scanner. The deflection unit has a beam input, into which the laser beam is fed, and a beam output, through which the laser beam is emitted from the unit after deflection. Only suitable lasers can be fed into the beam input. Refer to the corresponding data sheet in the Appendix for details. Depending on the version, the beam output is either open or fitted with an F-Theta lens or glass guard (\Rightarrow page 13, F-Theta lens).

Fig. 2 Functional principle

- 1 Digital interface of deflection unit
- 2 Power supply of subsystem
- 3 Beam input
- 4 Beam output
- 5 Operating field
- 6 Status LEDs
- 7 Galvanometer scanners with mirrors

Only for deflection units with water cooling

- 8 Input coolant
- 9 Output coolant

Functional description Chapter 4

Only for deflection units fitted with an F-Theta lens

4.2 F-Theta lens

The F-Theta lens is specially designed for use with 2-axis deflection units. It focuses the laser beam at optimum quality on any position in the marking field. At the same time, it provides partial optical compensation for the barrel-shaped distortion that is unavoidable when using a two-axis deflection unit. The remaining distortion (see below) must be compensated by the deflection unit drive.

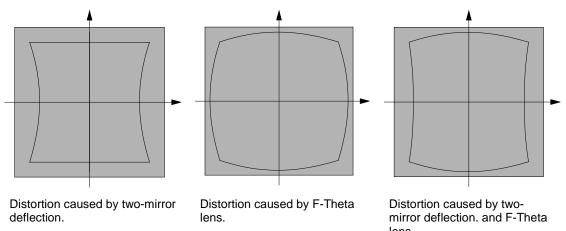


Fig. 3
Field distortion
with and without
F-Theta lens

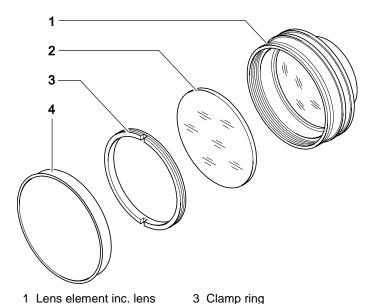


Fig. 4
Example: FTheta lens for
Nd:YAG

Assembly instructions

2 Glass guard

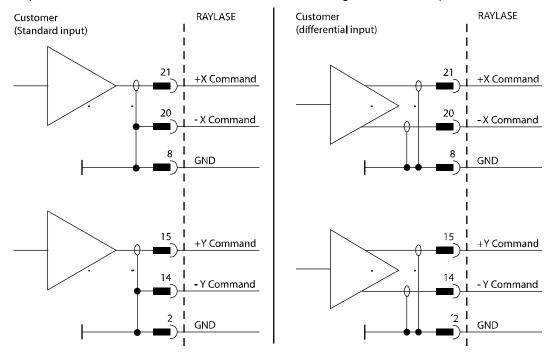
o Before installation, check the protection window for dirt, scratches or cracks.

4 Protective cap

- If the protection window is dirty, it must be cleaned (⇒ page 19, Instructions for cleaning lenses and glass guards).
- If the protection window is scratched or cracked, it must be replaced.
- Brush the outer thread of the protective glass with a small amount of special grease for photo-mechanical components. Normal fats are not suitable because they release gases and thus the optical system can be destroyed.
- Screw the protection window and mount into the beam output on the deflection unit until it is positioned securely.

Chapter 4 Functional description

For deflection units with analog interface only


4.3 Analog interface

The terminal assignment of the analog interface is outlined below. To determine whether the deflection unit is fitted with an analog or a digital interface, refer to the code on the rating plate (⇒ page 11, Rating plate code).

J1	PIN	Signal	PIN	Signal
	1	GND	14	-Y Command
1	2	GND	15	+Y Command
0.0	3	GND	16	Y Position
14	4	GND	17	/Y Temp ok
13	5	/Y Ready	18	Y Pos Error
	6	GND	19	Y Velocity
25	7	GND	20	-X Command
25 PIN D-SUB	8	GND	21	+X Command
	9	GND	22	X Position
	10	GND	23	/X Temp ok
	11	/X Ready	24	/X Pos Error
	12	GND	25	X Velocity
	13	GND		

Fig. 5 Signal input

To prevent faults, shielded cables should be used and signals must be input as shown below.

For deflection units with digital interface only

4.4 Digital interface

The deflection unit is connected to a RAYLASE control card using the 25-pin D-SUB connector. All signals are compatible with RAYLASE's extended function XY2-100 standard.

If the deflection unit is also fitted with a 9-pin D-SUB connector, the power supply to the deflection unit comes from this additional connector. Deflection units that are not fitted with a 9-pin D-SUB connector are powered by the digital interface. Refer to the following connection table:

J1	PIN	Signal	PIN	Signal
	1	I -SENDCLOCK	14	I +SENDCLOCK
1	2	I -SYNC	15	I +SYNC
0 s	3	I -X CHANNEL	16	I +X CHANNEL
14	4	I -Y CHANNEL	17	I +Y CHANNEL
13 99	5	I -Z CHANNEL	18	I +Z CHANNEL
25	6	O -HEAD-STATUS	19	O +HEAD-STATUS
25	7	I -P-DAC CHANNEL		I +P-DAC CHANNEL
25 PIN D-SUB	8	nc	21	nc
	9	Nc ¹ +VSS ¹	22	nc ¹ +VSS ¹
	10	nc ¹ +VSS ¹	23	GND
	11	GND	24	GND
	12	nc ¹ -VSS ¹	25	nc ¹ -VSS ¹
	13	nc ¹ -VSS ¹		

I= Diff. Input, nc = Not connected (not used) O = Diff. Output

Specifications

Diff. Input-, Diff. Input+				
Input voltage	max. ±24.0V			
Input threshold	200mV			
Hysteresis	typ. 45mV			
Input impedance	120Ω			
ESD protection	±15kV			

Diff. Output-, Diff. Output+					
Output low	max. 0.6V	max. 40mA			
Output high	min. 2V @ 50Ω	max. 40mA			
ESD protection	±10kV				

Power supply

Designation	Voltage	Current	Residual rip- ple	Noise	
-VSS	-15V to -18V	2.5A	≤100mV	≤0.5% DC at	
+VSS	+15V to +18V	2.5A		30MHz	

¹) If there is no separate 9-pin D-SUB power input, the power supply is provided by the digital interface. The power supply must be provided by the OEM customer.

Chapter 4 Functional description

For deflection units with 9-pin D-SUB connector only

4.5 Power supply

The 9-pin D-SUB connector provides the deflection unit with power. The power supply must be provided by the OEM customer. Refer to the following connection and parameter table:

J1	PIN	Des- igna- tion	Voltage	Current	Residual rip- ple	Noise
	1, 2, 6	-VSS	-15V to -18V	min. 2.5A		≤0.5% DC at
9	4, 5, 9	+VSS	+15V to +18V	min. 2.5A		30MHz
1 5	3, 7, 8	GND				
9 PIN D-SUB						

5 INSTALLATION

Warning:

- The laser beam can cause severe injury to the eyes and the skin. Note that even apparently matt objects can reflect the wavelength of laser beams. All personnel in the room must wear appropriate laser protection goggles and, if necessary, protective clothing.
- Never look directly at the laser beam, even when wearing protective gogales.
- The deflection unit may require the laser device to be assigned to a different danger class (⇒ page 5, Classification of laser devices).
- The laser must be switched off during installation.
- We recommend that the laser area is completely protected by an appropriate working chamber. If this is not possible, appropriate protective measures for the laser class must be implemented.
- The mirrors in the deflection unit must move freely after installation of the deflection unit. No components of the laser device may protrude into the deflection unit.
- The laser device must be of sufficient quality that the laser beam can only be emitted at the beam output on the deflection unit.
- The "Laser radiation" national accident prevention regulations must be observed
- Connecting cables may not be subjected to mechanical strain.
- The deflection unit must be protected against moisture, dust and corrosive vapors.
- The optical components may only be touched when wearing suitable cotton gloves.
- The deflection unit must be protected against static discharge and strong electromagnetic fields.
- The power density of the input laser radiation may not exceed the maximum permissible power density of the optical components of the deflection unit.
- The beam path and the function of the deflection unit must be tested after installation.
 - We recommend performing all tests with a danger class 1 or 2 laser to minimize the risk of injury. If this is not possible, the laser used must be set to the lowest possible power. This setting must be secured against accidental adjustment.

Procedure

- o Carefully remove the protective cover over the beam input with a small screwdriver.
- To install the deflection unit, insert locating pins into the corresponding holes and attach
 the deflection unit to the prepared installation surface using screws.
 Note: The deflection unit may only be installed using the pins and screws specified by
 RAYLASE. Follow the installation drawing supplied.
- For details of how to connect the deflection unit to a RAYLASE control card, refer to the corresponding manual.

Chapter 6 Cleaning

6 CLEANING

6.1 Cleaning the housing

Warning:

The laser beam can cause severe injury to the eyes and the skin. Before cleaning, make sure that the laser device is switched off and secured against accidentally being switched on.

The deflection unit housing is dust proof. It can be cleaned with a duster. If it is very dirty, the duster can be moistened with a light and non-aggressive cleaning solution (e.g. soap solution).

6.2 Cleaning the optical system

Warning:

The laser beam can cause severe injury to the eyes and the skin. Before cleaning, make sure that the laser device is switched off and secured against accidentally being switched on.

Dirty optical surfaces result in increased absorption of the laser radiation. This can cause the dirt to heat up sufficiently for it to burn into the optical surfaces and permanently damage them.

The following circumstances can cause increased accumulation of dirt:

- The ambient atmosphere is contaminated with dirt, grease or other particles.
- Vapors and particles are produced while working.
- Talking, coughing or sneezing close to optical surfaces.

In general, all contamination of the optical system should be avoided wherever possible. However, as contamination cannot be completely avoided, the optical system must be cleaned at appropriate intervals. Regular checking and cleaning of the optical surfaces can prevent permanent damage.

Note: RAYLASE accepts no liability for damaged optical components!

Note: Damage caused during the laser process, e.g. when processing metals, is irreversible and cannot be resolved by cleaning.

Cleaning Chapter 6

For deflection units with lens and glass guard only

6.2.1 Instructions for cleaning lenses and glass guards

Warning:

The laser beam can cause severe injury to the eyes and the skin. Before cleaning, make sure that the laser device is switched off and secured against accidentally being switched on.

Fingerprints contain aggressive substances that can damage the optical surfaces. Optical surfaces should therefore only be touched when wearing suitable gloves or with a lens cleaning cloth.

- Only touch the optical elements when wearing suitable cotton gloves and only touch the edges.
- Blow loose particles from the surface with clean and oil-free compressed air. Note that the compressed air in workshops can contain oil particles and is therefore unsuitable for cleaning the optical system.
- Moisten a suitable lens cleaning cloth with ethanol suitable for cleaning optical components.
- Place one end of the moistened cloth on the optical system and slowly move it over the optical components. Do not exert any pressure and do not rub the optical components.
- o Remove any remaining ethanol residue with a dry optical cloth.
- Repeat the procedure until the surface is completely clean. Use a new cleaning cloth for each repetition.

6.2.2 Instructions for cleaning mirrors

Warning:

The laser beam can cause severe injury to the eyes and the skin. Before cleaning, make sure that the laser device is switched off and secured against accidentally being switched on.

The mirror surfaces are extremely sensitive and may only be cleaned by experienced personnel. We strongly recommend sending the deflection unit in to RAYLASE for the mirrors to be cleaned, as opening of the deflection unit by unauthorized personnel voids the warranty.

However, if you do want to clean the mirrors yourself, follow the same procedure as for cleaning the lens but with even more care (⇒ above, Instructions for cleaning lenses and glass guards).

6.2.3 Special instructions for zinc selenide optical elements

Zinc selenide (ZnSe) is an inorganic orange material that can be used in different forms as an optical component (e.g. lenses, beam splitters, mirrors) in CO₂ laser systems.

Properties of zinc selenide

Melting point 1,520°C

Density 5.27g/cm³ at 25°C Solubility Sensitive to water

To improve the optical properties of the material, zinc selenide is often given an anti-reflex coating that can contain thorium fluoride. Thorium is a α emitter and is slightly radioactive. Thorium is potentially hazardous to health if it is inhaled or swallowed. As the coating contain-

ing thorium is enclosed between non-radioactive layers, there is no risk to the user under normal circumstances.

Damage to zinc selenide optical elements

Under normal circumstances, no special precautions are necessary when handling or storing zinc selenide.

In case of damage to a zinc selenide optical element or its anti-reflex coating, follow the instructions below.

Damage to anti-reflex coating

- Possible causes:
 - Coating coming into contact with water, acids or alkalis
 - Mechanical damage due to improper cleaning or handling
- Action:
 - Pack the optical elements in an airtight sealed plastic container.
 - Return the container to your supplier. The supplier is responsible for professional disposal of the material.

Damage to optical element

- Possible causes:
 - Contact with water, acid or alkali
 - Mechanical damage due to improper cleaning or handling
- Action:
 - Avoid inhaling dust!
 - Carefully collect up fragments and pack them in an airtight sealed plastic container.
 - Return the container to your supplier. The supplier is responsible for professional disposal of the material.

Damage to optical element due to laser radiation

- Cause
 - Damage to optical element due to laser radiation (laser radiation is no longer completely transmitted but is absorbed into the element due to damage to the anti-reflex coating or contamination of the optical element)
- Action:
 - Switch off the laser device immediately!
 - Leave the room for at least 30 minutes!
 - Wear gloves and a mouth protector while performing the subsequent steps!
 - Carefully collect up all fragments and pack them in an airtight sealed plastic container.
 - Clean all contaminated components and surfaces with a damp cloth and pack the cleaning cloths in a sealed plastic container.
 - Return the containers to your supplier. The supplier is responsible for professional disposal of the material.

Warning: Because of the risks outlined, zinc selenide optical elements must be cleaned with special care and is performed entirely at your own risk!

Maintenance Chapter 7

7 MAINTENANCE

Repairs may only carried out by RAYLASE or RAYLASE Certified Service Centres as special know-how and comprehensive testing methods are required.

Certified Service Centres:

Russia

Laser Technology Centre Politechnicheskaya 29 195251 St.Petersburg, Russia

Phone: +7 (812) 552 72 61 Fax: +7 (812) 535 46 98 E-mail: sales@ltc.ru Web: www.ltc.ru

Turkey

ISSE ULUSLARARASI TICARET ve DANISMANLIK LTD. STI.

Ikitelli O.S.B. Sefaköy San. Sit. 4.

Blok No: 1 Kücukcekmece

Istanbul, Turkey

Phone: +90 212 671 15 64
Fax: +90 212 671 21 64
E-mail: info@lasersos.com.tr
Web: www.lasersos.com.tr

China

RAYLASE Laser Technology (Shenzhen) Co., Ltd 5th Floor, No.6 Qiancheng Road Henggang 228 Industrial Park Longgang District, Shenzhen 518115 Guangdong China

Phone: +86-(0)755-8222 8324 Fax: +86-(0)755-8222 8193 E-mail: <u>info@raylase.cn</u> Web: <u>www.raylase.cn</u>

Brazil

ReB Laser Comercial Serviços Ltda. Rua Eula Herper Bowden, 82 09629-100 - Rudge Ramos São Bernardo do Campo - SP

Phone: +55(11) 4368-7976 - +55(11) 4368-5053

Fax: +55(11) 4365-4572

E-mail: tecnica@reblaser.com.br Web: www.reblaser.com.br Chapter 8 Troubleshooting

8 TROUBLESHOOTING

Warning:

The laser beam can cause severe injury to the eyes and the skin.

- Never look directly or indirectly into the laser beam during troubleshooting.
- Do not disable any safety precautions to protect against laser radiation.
- Wear protective clothing and/or goggles appropriate for the relevant laser class.

In case of malfunctions, check whether the symptom and a possible remedy are included in the following checklist.

Problem	Possible cause	and remedy			
Poor marking	Defective power supply				
quality	Incorrect marking	g parameters			
Marking quality has deteriorated	Lens dirty	⇒ page 19, Instructions for cleaning lenses and glass guards			
nas deteriorated	Mirror dirty	⇒ page 19, Instructions for cleaning mirrors			
	Laser power decreasing	The RAYLASE weldMARK™ software can compensate for a loss of laser power. Menu: System > Global adjustments			
	Marking parameters changed				
	Divergence optic	s changed			
Laser spot changed	Dirty lens Dirty or dam- aged mirrors	 ⇒ page 19, Instructions for cleaning lenses and glass guards ⇒ page 19, Instructions for cleaning mirrors Send deflection unit in for repair 			
	Laser system adjusted				
No laser beam, although pro-	Beam path blocked.	Remove protective cover from beam input and/or output			
cess started from PC.	Laser drive fault				
	Fault in laser sys	tem			
The deflection unit only deflects the laser beam in one direction or not at all.	Data cable defective	⇒ page 10, Status LEDs			
X and Y axis reversed	Incorrect cabling				

If the fault cannot be resolved, contact RAYLASE Customer Service for further assistance.

INDEX

Α
Analog interface14
С
CE symbol
D
Digital interface15
F
Functional description12
I
Installation17
L
Laser beam deflection unit
M
Maintenance21

r
Package contents
R
Rating plate
S
Safety instructions 4 Seal label 4 Shutter 4 Signs 4 Status LEDs 10
Т
Technical data
W
Warranty9
X
XY2-100 Standard

SUPERSCAN II

General Specifications

Vo	Valtage	±15 to ±18 V	Typical Deflection (optical)	Typical Deflection (optical)	
	Voltage	±15 (0 ±16 V	Resolution		12 µrad
Power Supply Current		3 A, RMS, max. 10 A	Repeatability RMS		2 µrad
	Ripple Noise	Max. 200 mVpp, @ 20	Max. Gaindrift ¹⁾		50 ppm/K
		MHz bandwidth	Max. Offsetdrift ¹⁾		30 μrad/K
Ambient Temperature		+15 to +35 °C	Long-term Drift over 8 hours ^{1), 2)} SS-II		< 300 µrad
Storage Temperature		-10 to +60 °C	Long-term Drift over 24 hours ^{1), 2)} SS-II-LD		< 200 µrad
Humidity		≤ 80 % non-condensing	Auto-calibration option:		
Interface Signals		Digital XY2-100 Protocol	Position Accuracy 3)		< 50 µrad/K

¹⁾ Drift per axis, 2) after warming-up, variations of ambient temperature < 1K, variations of cooling water 1K < 3) depending on the interval between auto-calibration cycles

Aperture Dependent Specifications - Mechanical Data

	SS-II-10	SS-II-12	SS-II-15	SS-II-20	SS-II-30
Input Aperture [mm]	10.0	12.0	15.0	20.0	30.0
Beam Displacement [mm]	12.4	14.0	18.3	26.0	35.7
Weight, without objective [kg]	approx. 3.1	approx. 3.7	approx. 3.7	approx. 3.9	approx 5.9
Dimension (mm) (L x W x H)	165 x 120 x 115	170 x 125 x 126	170 x 125 x 126	168.5 x 130 x 121	200 x 159 x 150

Aperture Dependent Specifications - Dynamic Data

Input Aperture		10 mm			15 mm	
Options	Standard	Low Drift	Auto-calibration	Standard	Low Drift	Auto-calibration
Acceleration Time [ms]	≤ 0,19	≤ 0,19	≤ 0,22	≤ 0,32	≤ 0,32	≤ 0,36
Writing Speed [cps] 1), 2)	> 800	> 800	> 700	>500	>500	> 435
Positioning Speed [m/s] 1)	> 10	> 10	> 8,8	> 7	> 7	> 6
Input Aperture		20 mm			30 mm	
Options	Standard	Low Drift	Auto-calibration	Standard	Low Drift	Auto-calibration
Acceleration Time [ms]	≤ 0,60	≤ 0,60	≤ 0,69	≤ 0,75	≤ 0,75	≤ 0,80
Writing Speed [cps] 1), 2)	> 350	> 350	> 300			
Positioning Speed [m/s] ¹⁾	> 6	> 6	> 5.2	> 5	> 5	> 4

¹⁾ With F-Theta Lens f=163 / field size 120 mm x 120 mm, 2) Single-stroke font with 1 mm height.

Mirrors & Objectives

Scan mirrors and objectives with optimized mounts are available for all typical laser types, wavelengths, power densities, focal lengths and working fields. Customer specific configurations are also possible. Please contact the RAYLASE support team for specific information and possible combinations on +49-8153-8898-0 or email support@raylase.de

Water Tempering Specifications

Specifications		Flow rate	Pressure loss
Water ¹⁾	Clean tap water with additives	2 I / min	0,3 bar
Temperature	22-28°C	4 I / min	0,4 bar
Pressure	2-3 bar	6 I / min	0,7 bar

(1) Caution: When using cooling water including deionized water, suitable additives must be

used to prevent the growth of algae and protect the aluminium parts against corrosion.

Additive recommendations: Standard industrial applications e.g. CCL105 (NALCO)

Food & beverage, packaging applications: e.g. polypropylene glycol (Dow Chemical)

Please consult your additive supplier for dosage information

SUPERSCAN II-HS

General Specifications

Power Supply	Voltage	±15 to ±18 V	Typical Deflection	±0.393 rad
	Current	3.0 A, RMS, max. 10 A	Resolution	12 µrad
	Ripple	Max. 200 mVpp, @ 20	Repeatability RMS	2 µrad
	Noise	ise MHz bandwidth	Max. Gaindrift ¹⁾	50ppm/K
Ambient Temperature		+15 to +35 °C	Max. Offsetdrift ¹⁾	30 µrad/K
Storage Temperature		-10 to +60 °C	Long-term Drift over 8 hours ^{1), 2)}	< 300 µrad
Humidity		≤ 80 % non-condensing	Long-term Drift over 24 hours ^{1), 2),3)}	<200µrad
Interface Signals		Digital XY2-100 Protocol		

¹⁾ Drift per axis, 2) after warming-up, variations of ambient temperature < 1K, 3) SUPERSCAN-II-HS-LD Options

Aperture Dependent Specifications - Mechanical Data

	SS-II-HS-15	SS-II-HS-LD-15	SS-II-HS-30	SS-II-HS-LD-30
Input Aperture [mm]	15.0	15.0	30.0	30.0
Beam Displacement [mm]	18.3	18.3	35.7	35.7
Weight, without Lens [kg]	approx. 3.7	approx. 5.5	approx. 6.0	approx. 8.4
Dimension (mm) (L x W x H)	170 x 125 x 126	170 x 125 x 126	200 x 159 x 150	200 x 159 x 150
Dynamic Data:				
Acceleration Time [ms]	0.24	0.24	0.56	0.56
Writing Speed [cps] 1, 2	615	615	•	-
Positioning Speed [m/s] 1	> 9	>9	> 6	> 6

¹⁾ With F-Theta Lens f=160 / field size 110 mm x 110 mm, 2) single-stroke font with 1 mm height

Water Tempering Specifications

Specifications		Flow rate	Pressure loss
Water ¹⁾	Clean tap water with additives	2 I / min	0,3 bar
Temperature	22-28°C	4 I / min	0,4 bar
Pressure	2-5 bar	6 I / min	0,7 bar

 $[\]textbf{(1) Caution:} \ \textbf{When using cooling water including deionized water, suitable additives must be } \\$

used to prevent the growth of algae and protect the aluminium parts against corrosion.

Additive recommendations: Standard industrial applications e.g. CCL105 (NALCO)

Food & beverage, packaging applications: e.g. polypropylene glycol (Dow Chemical)

Please consult your additive supplier for dosage information

Mirrors & Objectives

Scan mirrors and objectives with optimized mounts are available for all typical laser types, wavelengths, power densities, focal lengths and working fields. Customer specific configurations are also possible. Please contact the RAYLASE support team for specific information and possible combinations on +49-8153-8898-0 or email support@raylase.de

SUPERSCAN IIE

General Specifications

Power Supply Ri	Voltage	±15 to ±18 V	Typical Deflection	±0.393 rad
	Current	3.0 A, RMS, max. 10 A	Resolution	12 µrad
	Ripple	Max. 200 mVpp, @ 20	Repeatability RMS (for low noise tuning)	1 µrad
	Noise	MHz bandwidth	Max. Gaindrift ¹⁾	50ppm/K
Ambient Temperature		+15 to +35 °C	Max. Offsetdrift ¹⁾	30 μrad/K
Storage Temperature		-10 to +60 °C	Long-term Drift over 8 hours ^{1), 2)}	< 150 µrad
Humidity		≤ 80 % non-condensing	Long-term Drift over 24 hours ^{1), 2),3)}	< 100 µrad
Interface Signals		Digital XY2-100 Protocol		

¹⁾ Drift per axis, 2) after warming-up, variations of ambient temperature < 1K, 3) SS-IIE-LD, SS-IIE-HS-LD Options

Aperture Dependent Specifications - Mechanical Data

	SS-IIE
Input Aperture [mm]	15.0
Beam Displacement [mm]	18.3
Weight, without objective [kg]	ca. 3.7
Dimension (mm) (L x W x H)	170 x 125 x 126

Aperture Dependent Specifications - Dynamic Data

	SS-IIE-LD-15	SS-III	E-HS-15	SS-IIE-	HS-LD-15
Tuning	LN	L N	W	LN	W
Acceleration Time [ms]	≤ 0.55	≤ 0.40	≤ 0.24	≤ 0.40	≤ 0.24
Writing Speed [cps] 1), 2)	-	> 450	> 615	> 450	> 615
Positioning Speed [m/s] 1)	> 6	> 7	> 9	> 7	> 9

¹⁾ With F-Theta Lens f=160 / field size 110 mm x 110 mm, 2) Single-stroke font with 1 mm height.

Water Tempering Specifications

Specifications		Flow rate	Pressure loss
Water ¹⁾	Clean tap water with additives	2 I / min	0,3 bar
Temperature	22-28°C	4 I / min	0,4 bar
Pressure	2-5 bar	6 l / min	0,7 bar

⁽¹⁾ **Caution:** When using cooling water including deionised water, suitable additives must be used to prevent the growth of algae and protect the aluminium parts against corrosion.

Additive recommendations: Standard industrial applications e.g. CCL105 (NALCO)

Food & beverage, packaging applications: e.g. polypropylene glycol (Dow Chemical)

Please consult your additive supplier for dosage information

Mirrors & Objectives

Scan mirrors and objectives with optimized mounts are available for all typical laser types, wavelengths, power densities, focal lengths and working fields. Customer specific configurations are also possible. Please contact the RAYLASE support team for specific information and possible combinations on +49-8153-8898-0 or email support@raylase.de

Tuning

LN Low noise Tuning

W Short acceleration time tuning