

Reference Manual

weldMARK™ COM Automation Server

This manual has been compiled by RAYLASE for its customers and employees.

RAYLASE reserves the right to change the information contained in this manual without prior
notice.

All rights are reserved. Duplication of this manual in whole or in part, particularly by photocop-
ying, scanning or imaging, and reproduction by any means are forbidden without the prior,
written consent of RAYLASE.

 Content

MN047 / v3.0.3 weldMARK™ COM Automation Server 3

LIST OF CONTENT

1 INTRODUCTION ... 5
1.1 About this Manual ... 5
1.2 Technical Support .. 5
1.3 Manufacturer .. 5

2 COM-INTERFACE – BACKGROUND .. 6
2.1 Overview of COM ... 6
2.2 COM Objects .. 6
2.3 COM and ActiveX Servers ... 7
2.4 Automation ... 7
2.5 Writing the Automation Controller .. 8

3 REQUIREMENTS AND INSTALLATION ... 9
3.1 System Requirements .. 9
3.2 Hardware Dongle Installation ... 9
3.3 Software Installation ... 9
3.4 Registering the weldMARK™ Automation Server Object .. 9

4 WELDMARK™
®
 AUTOMATION OBJECT MODEL CONCEPTS 10

4.1 Overview .. 10
4.2 Creating the COM Object ... 12

4.2.1 C++ Example .. 12
4.2.2 Borland C++ Builder 5.0 Example .. 12
4.2.3 Visual C++ 6.0 Example ... 13
4.2.4 Example for C#.NET ... 13
4.2.5 Example for VB.NET ... 16
4.2.6 Visual Basic 6.0 Example ... 19
4.2.7 Example for VBScript .. 21

4.3 Using the Marker Library .. 22
4.3.1 Overview ... 22
4.3.2 Initializing the Marker Library .. 23
4.3.3 Working with JobObjects .. 23
4.3.4 Working with MarkObjects .. 23
4.3.5 Working with the Standard I/O card .. 24

4.4 Error Handling .. 24
4.4.1 Visual Basic Error Client ... 24
4.4.2 C++ Error Client .. 25

4.5 Extended Error Handling .. 27

5 FOCUS SHIFTER ... 31
5.1 Loading Scan Head Configuration file.. 31
5.2 Creating Objects ... 31
5.3 Changed/New commands .. 31

6 PULSED IPG- AND SPI-LASER .. 32
6.1 Initialization ... 32
6.2 Mark_In_Progress signal ... 33
6.3 Adjusting laser parameters and setting the power ... 34
6.4 Checking for Errors of pulsed IPG/SPI Lasers ... 34
6.5 Resetting Errors of pulsed IPG/SPI Lasers .. 34

7 MARKER LIBRARY FUNCTIONS ... 35

Content

4 weldMARK™ COM Automation Server MN047 / v3.0.3

7.1 Function Overview .. 35
7.2 Functions .. 36

8 EXAMPLE CODE ... 112
8.1 C++ Example .. 112

Introduction Chapter 1

MN047 / v3.0.3 weldMARK™ COM Automation Server 5

1 INTRODUCTION
Thank you for purchasing the RAYLASE AG weldMARK™ 3 marking software suite. The follow-
ing information will assist you in properly installing the software in your computer and configuring
your software to communicate with the Automation server that weldMARK™ exposes.

1.1 About this Manual
The weldMARK™ Automation Server Interface Manual contains detailed information about
interfacing to the COM Automation server provided by RAYLASE AG, and is meant to be a
reference tool. This manual assumes you have a working knowledge of the COM specification
and programming languages compatible with COM objects.

1.2 Technical Support
If you are experiencing problems installing this package and you need help, you should:

 Retry the action, carefully following the instructions given for that task in this guide.

 Try to determine the nature of the problem. By eliminating variables, the problem can be
narrowed down. If it appears to be hardware problems, check the documentation that
came with your hardware for maintenance or hardware-related issues. Contact your hard-
ware representative if necessary.

 Contact RAYLASE AG Customer Service department for additional technical support.

1.3 Manufacturer
RAYLASE AG
Argelsrieder Feld 2+4
82234 Wessling
Deutschland
Tel.: +49 (0) 81 53 - 88 98 - 0
Fax: +49 (0) 81 53 - 88 98 - 10
http://www.raylase.de
E-Mail: info@raylase.de

http://www.raylase.de/
mailto:info@raylase.de

Chapter 2 COM-Interface – Background

6 weldMARK™ COM Automation Server MN047 / v3.0.3

2 COM-INTERFACE – BACKGROUND
This chapter gives a brief overview of the Microsoft COM specification, and the implementa-
tion of the RAYLASE AG Automation object.

2.1 Overview of COM
COM is the Component Object Model, an object-based programming specification designed
by Microsoft to provide robust object interoperability through sets of predefined routines called
interfaces. COM is based on a binary standard, rather than a source code standard, thereby
enabling objects written in different languages, running in different process spaces and on
different platforms to communicate. COM objects can also be transparently extended, modi-
fied and updated because unique identifiers are used to create them and to access their inter-
faces. COM also has a library containing a set of standard interfaces that define the core func-
tionality of a COM object, and a small set of API functions designed for the purpose of creat-
ing and managing COM objects.

As extensible systems software architecture, COM is the basis for other technologies such as
OLE and ActiveX. These technologies are operating system extensions that define their own
rules and provide their own libraries for creating and manipulating objects of those types. Us-
ing COM as a foundation, developers can create their own extensions so that objects created
according to their rules can interact with other COM-based technologies.

2.2 COM Objects
A COM object is an object that is instantiated from a CoClass, which is a class that imple-
ments one or more interfaces. The COM object provides the services indicated by each inter-
face its CoClass supports. Any time a COM object is used it is referenced by a pointer to one
of its interfaces. This establishes two important features of a COM object, which are:

 With access only through function pointers, no external manipulation of a COM object can
directly modify its data.

 Because an interface reference is a pointer, any language, with any internal state repre-
sentation, can use COM objects as long as that language can create pointers to structures,
or arrays, of function pointers.

A CoClass must have a class factory and a class identifier (CLSID) so that its COM object can
be externally instantiated (from another module). Using these unique identifiers for CoClasses
means that they can be transparently updated whenever new interfaces are implemented in
their class. Because interfaces are also accessed by unique identifiers rather than by names,
CoClasses can support both old and new versions of an interface (as a collection of methods
and implementations). The new interface can modify or add methods without a conflict of ver-
sions, which is a common problem when using DLLs. Moreover, interface pointers are poly-
morphic, allowing any kind of interface pointer to manipulate any kind of COM object. With
COM, even objects built by different vendors at different times can interact without conflict.

COM-Interface – Background Chapter 2

MN047 / v3.0.3 weldMARK™ COM Automation Server 7

2.3 COM and ActiveX Servers
A COM server (like the RAYLASE AG Automation object) is an application or a library that
provides services to a client application or library. A COM server can be an in-process server,
meaning a DLL running in the same process space as the client, a local server, meaning an
EXE running in a different process space but on the same machine as the client, or a remote
server, meaning an application running on a different machine from that of the client. COM
servers are the modules in which COM objects exist. A COM server that contains the code for
automation objects and ActiveX controls is an ActiveX server. The RAYLASE AG Automation
object is implemented as a local or Automation server, and is identified by the filename
wmCOM.exe.

2.4 Automation
Automation refers to the ability of an application to control the objects in another application,
programmatically. The client of an Automation object is referred to as an Automation controller
and the server object being manipulated is called the Automation object. Automation can be
used on in-process, local, and remote servers.

Automation is characterized by two key points:

 The Automation object must be able to define a set of properties and commands, and to
describe their capabilities through type descriptions. In order to do this they must have a
way to provide information about the object’s interfaces, the interface methods, and those
methods’ arguments. Typically this information is available in type libraries. The type library
for the RAYLASE AG Automation object, wmCOM.tlb, is included on the distribution CD.

 Automation objects must make these methods accessible so that other applications can
use them. For this they must implement the IDispatch interface. Through this interface an
object can expose all of its methods and properties. Through the primary method of this in-
terface, the object’s methods can be invoked, once having been identified through type in-
formation.

Developers wanting to create and use non-visual OLE objects that can run in any process
space can use Automation. One of the reasons for this is that Automation is a mechanism that
provides an automatic way to allow cross-process applications to communicate by implement-
ing the IDispatch interface, which automates the marshaling process. Automation does, how-
ever, restrict the types that you can use. For a list of allowed types, refer to your compiler
documentation.

Chapter 2 COM-Interface – Background

8 weldMARK™ COM Automation Server MN047 / v3.0.3

2.5 Writing the Automation Controller
There are several different ways you can access the methods of an Automation object from a
remote program. One method enables you to access the methods via Variants, and a second
lets you access them via something called a dispinterface. A simpler approach is to use the
Type Library, wmCOM.tlb, available after a weldMARK™ installation.

What is a Type Library?

If the only people who used COM objects were C++ programmers, one could pass around a
header file in order to define the proper way to access an interface. However, COM needs to
be available to a wide range of programmers using a diverse set of tools.

Fortunately, the declarations for COM objects can be stored in a type library. Type libraries
contain code that can be called to describe the structure of a particular object, including its
names, methods, the parameters passed to the methods, and some of the types used by the
object.

In short, a type library is just a header file packaged so multiple languages can use it. A type
library defines the types found in a particular interface or set of interfaces. Each language –
VB, Object Pascal, C++, and so on – can open a type library, read its contents, and generate
code or other symbols of use to programmers accessing that object from a particular lan-
guage or tool.

Please refer to your compiler documentation for details on the importation and use of type
libraries.

Requirements and Installation Chapter 3

MN047 / v3.0.3 weldMARK™ COM Automation Server 9

3 REQUIREMENTS AND INSTALLATION
This chapter gives a set by step description on installing the weldMARK™ Automation object
software on your computer.

3.1 System Requirements
You need the following hardware:

 Intel Pentium Computer running Microsoft Windows 2000 Service Pack 3 or higher up to
Microsoft Windows 7 Professional. To determine the version of the operating system and
the amount of memory installed on your computer, on the desktop right-click My Computer,
then select Properties.

 CD-ROM drive for software installation.

 1 GB RAM minimum.

 100 MB of local disk space available.

3.2 Hardware Dongle Installation
The weldMARK™ Automation object requires a hardware dongle. A dongle is a security de-
vice attached to a valid USB port. If you do not have a hardware dongle, please consult
RAYLASE.

3.3 Software Installation
The weldMARK™ Automation object files are included in the standard installation of weld-
MARK™ 3. The executable wmCOM.exe is placed in the “bin”-folder of the weldMARK™
install directory, and the Type Library wmCOM.tlb is placed in the “activex”-folder of the
weldMARK install directory.

3.4 Registering the weldMARK™ Automation Server Object
Before accessing the weldMARK™ Automation object, it must be registered on the local ma-
chine. The installation program automatically registers the COM server object when the pro-
gram installs. If for some reason you need to register a COM server object, the following is
included for reference:

To register an out-of-process server

 Run the server with the /regserver command-line option.

 You can also register the server by running it.

To unregister an out-of-process server:

 Run the server with the /unregserver command-line option.

In addition, many IDEs allow the registering of COM objects through their user interface. For
example, Visual Basic supports this function through the Add References dialog box.

Chapter 4 weldMARK™® Automation Object Model Concepts

10 weldMARK™ COM Automation Server MN047 / v3.0.3

4 WELDMARK™® AUTOMATION OBJECT MODEL
CONCEPTS

This chapter gives an overview of the COM component structure, the Automation object de-
sign, and offers some tips on interfacing with the COM component.

4.1 Overview
The RAYLASE AG Automation object component (CoClass) is a piece of binary code pack-
aged in the executable file wmMARK.exe (weldMARK). The name of the CoClass contained
in this component is Automate, and therefore the ProgID is weldMARK.Automate. The COM
interfaces provided by weldMARK are IUnknown and IAutomate, and are the only means of
getting access to the functionality of the COM component. IAutomate is essentially a wrapper
around the RAYLASE AG Marker Library, which provides all the services needed to interact
with the laser marker. The following diagram illustrates the relationship between the various
software components.

weldMARK™® Automation Object Model Concepts Chapter 4

MN047 / v3.0.3 weldMARK™ COM Automation Server 11

The COM Automation server is meant for advanced integration applications, and as such,
does not support:

 Text object special processing – The “Source” property of the text object is ignored.

 Barcode object special processing – The “Source” property of the barcode object is ig-
nored.

 weldMARK™ Automation objects – The object will load from a job, but calling MarkObject
has no effect.

 Mark in Progress – The Mark in Progress port will not automatically toggle when the sys-
tem is marking. The programmer must explicitly set the state of the port with SetScanCar-
dOutput.

 External Start – The External Start port settings in the job are ignored, and the port is not
automatically checked. The programmer must explicitly check the port with GetScanCar-
dInput.

When running jobs from the weldMARK™ GUI environment, features such as step and re-
peat, serialization, external start, etc. are handled for the user by the GUI. Since the weld-
MARK™ GUI is not used when interfacing with the COM server, the programmer must code
these features themselves. Access to the I/O card ports is exposed by the COM server as a
convenience to the programmer. All other control, such as Motor Control, needs to be accom-
plished by the programmer directly with the third party libraries.

The weldMARK™ component is an out-of-process server (or local server), which is an appli-
cation (wmCOM.exe) running in a different process space but on the same machine as the
client. For example, an Excel spreadsheet embedded in a Word document are two separate
applications running on the same machine. The local server uses COM to communicate with
the client.

Additionally, Automate has a dual interface, which is a custom (VTable) interface and a dis-
pinterface at the same time. It is implemented as a COM VTable interface that derives from
IDispatch. For those controllers that can access the object only at runtime, such as VBScript
and JScript, the dispinterface is available. For controllers that can take advantage of compile-
time binding, the more efficient VTable interface can be used.

Dual interfaces offer the following combined advantages of VTable interfaces and dispinter-
faces:

 For Automation controllers that cannot obtain type information, the dispinterface provides
runtime access to the object.

 For in-process servers, you have the benefit of fast access through VTable interfaces.

 For out-of-process servers, COM marshals data for both VTable interfaces and dispinter-
faces. COM provides a generic proxy/stub implementation that can marshal the interface
based on the information contained in a type library.

Chapter 4 weldMARK™® Automation Object Model Concepts

12 weldMARK™ COM Automation Server MN047 / v3.0.3

4.2 Creating the COM Object
Before you can control the weldMARK™ Automation object library from your client application,
you must obtain a pointer to an interface it supports. Typically, you connect to a server
through its main interface (IAutomate in this case).

Depending on the development environment you are using, you obtain a pointer to the inter-
face differently. Some IDEs provide the means to import the Type Library (wmCOM.tlb) pro-
vided. After importing, the interface becomes available through the IDE itself. Others control-
lers, such as VBScript, only allow late binding (at run time).

Consult your development environment help files for documentation on using COM objects.

4.2.1 C++ Example

The following code can be used to create the COM object in a C++ program. The functions
CoInitialize() and CoCreateInstance() are COM library calls supported in Windows operating
system. A successful installation of weldMARK™ and the ActiveX directory is required to ac-
cess the IAutomate pointer, the symbolic constants CLSID_Automate and IID_IAutomate.

// Initialize Windows COM libraries

::CoInitialize(NULL);

// Create an interface pointer

IAutomate* pMarker=NULL;

::CoCreateInstance(CLSID_Automate,

 NULL,

 CLSCTX_LOCAL_SERVER,

 IID_IAutomate,

 reinterpret_cast<void**>(&pMarker));

// Code to use the COM object goes here

pMarker->AttachToMarker();

etc…

// Unload the Windows COM libraries, we are finished with the object

::CoUninitialize();

4.2.2 Borland C++ Builder 5.0 Example

// This method creates the COM object, and keeps it loaded until the

// application closes

TCOMIAutomate Marker;

HRESULT hr=CoAutomate::Create(Marker);

if (FAILED(hr))

 {

 Application->MessageBox("Cannot start or locate the weldMARK COM

Automation server.","", MB_OK);

 Application->Terminate();

 }

weldMARK™® Automation Object Model Concepts Chapter 4

MN047 / v3.0.3 weldMARK™ COM Automation Server 13

4.2.3 Visual C++ 6.0 Example

You can use the Visual Studio ClassWizard to wrap the elements of the weldMARK™ type
library in an MFC C++ class and add the new class to a project. Your project must be created
as an MFC application in order to allow Class Wizard to generate the wrapper class. You
should also check the Automation and ActiveX Controls support options during project cre-
ation in order to generate some of the necessary OLE initialization code.

To import the elements of the weldMARK™ type library

 On the View menu, click ClassWizard. ClassWizard will appear.

 Click the Add Class button, then click From a type library… from the drop down list. The
Import from Type Library dialog box appears.

 Select the wmCOM.tlb type library from the programme\raylase\weldmark\activex directory
and click Open. The Confirm Classes dialog box appears. This dialog box contains a list
of classes that ClassWizard can create from information in the type library. The class
names are generated by ClassWizard.

 Optional: Use the Name text box to rename the class that is currently selected from the
list.

 Optional: Use the Header File and Implementation File text boxes to rename the .h and
.cpp files, if you choose to. Also, you can use the Browse buttons to rename the files or
cause the files to be generated in a different directory.

 All classes selected from the class list are added to these two files.

 Click OK. ClassWizard generates the class and adds the .h and .cpp files to your project.

4.2.4 Example for C#.NET

Create a new Visual C# Project in the Visual Studio IDE.

Add a new weldMARK-COM-Server reference. Accessible via the „COM“ tab, select „weld-
MARK Type Library“ and click <OK>.

The component „wmCOM“ will be visible in the references of the „Solution Explorer“ now.

Chapter 4 weldMARK™® Automation Object Model Concepts

14 weldMARK™ COM Automation Server MN047 / v3.0.3

reate a wmCOM.Automate type object in you application and initialize it as following:

weldMARK™® Automation Object Model Concepts Chapter 4

MN047 / v3.0.3 weldMARK™ COM Automation Server 15

using System;

using System.Windows.Forms;

namespace wmCOMSampleCS

 public partial class Form1 : Form

 {

 private wmCOM.Automate wmCOMObj = null;

 public Form1()

 {

 InitializeComponent();

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 wmCOMObj = new wmCOM.Automate();

 try

 {

 wmCOMObj.AttachToMarker();

 int nAvailableCards = 0;

 wmCOMObj.GetScanCardCount(out nAvailableCards);

 if (nAvailableCards > 0)

 {

 // add code here to start the actual work of your application ..

 }

 else

 {

 MessageBox.Show (

 "COM-Server did not find any controller

ard!",

 "Application Error",

 MessageBoxButtons.OK,

 MessageBoxIcon.Error

);

 }

 }

 catch (Exception ex)

 {

 MessageBox.Show (

 "COM-Server Initialization failed ..\r\n\r\n" +

x.Message,

 "COM-Server Error",

 MessageBoxButtons.OK,

 MessageBoxIcon.Error

);

 }

 }

 private void Form1_FormClosing(object sender, FormClosingEventArgs e)

 {

 try

 {

 wmCOMObj.ReleaseMarker();

 }

 catch

 {

 }

 }

 }

}

The function ReleaseMarker() should occur upon ending the application [Event FormClos-
ing()] at the latest, as shown in the example.

Chapter 4 weldMARK™® Automation Object Model Concepts

16 weldMARK™ COM Automation Server MN047 / v3.0.3

4.2.5 Example for VB.NET

Create a new Visual Basic. NET Project in Visual Studio IDE.

Add a new weldMARK-COM-Server reference in the “COM” tab. It is found under "weldMARK
Type Library" after clicking <OK>.

The component „wmCOM“ will be visible now in the project properties under references.

Create a new wmCOM.Automate object in you application and initialize it as follows:

weldMARK™® Automation Object Model Concepts Chapter 4

MN047 / v3.0.3 weldMARK™ COM Automation Server 17

Public Class Form1

 Private wmCOMObj As wmCOM.Automate = Nothing

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

ystem.EventArgs) _ Handles MyBase.Load

 wmCOMObj = New wmCOM.Automate

 Try

 wmCOMObj.AttachToMarker()

 Dim nAvailableCards As Integer = 0

 wmCOMObj.GetScanCardCount(nAvailableCards)

 If (nAvailableCards > 0) Then

 ' add code here to start the actual work of your application ..

 Else

 MessageBox.Show(_

 "COM-Server did not find any controller card!", _

 "Application Error", _

 MessageBoxButtons.OK, _

 MessageBoxIcon.Error _

)

 End If

 Catch ex As Exception

 MessageBox.Show(_

 "COM-Server Initialization failed .." + vbCrLf + vbCrLf +

x.Message, _

 "COM-Server Error", _

 MessageBoxButtons.OK, _

 MessageBoxIcon.Error _

)

 End Try

 End Sub

 Private Sub Form1_FormClosing(ByVal sender As System.Object, ByVal e As _

System.Windows.Forms.FormClosingEventArgs) Handles MyBase.FormClosing

 Try

 wmCOMObj.ReleaseMarker()

 Catch

 End Try

 End Sub

End Class

The function ReleaseMarker() should occur upon ending the application [Event FormClos-
ing()] at the latest, as shown in the example.

Dealing with COM-Server Error messages in .NET languages is fairly easy.
Here is an example:

Private Sub btnPrepareJob_Click(_

ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

tnPrepare.Click

 Dim nObjectsInJob As Integer = 0

 Try

Chapter 4 weldMARK™® Automation Object Model Concepts

18 weldMARK™ COM Automation Server MN047 / v3.0.3

 wmCOMObj.LoadJobFromFile("A1.wmj", iJobID)

 wmCOMObj.GetObjCount(nObjectsInJob)

 wmCOMObj.SetObjPos(nObjectsInJob, 100, 100)

 lblTestInfo.Text = String.Format("Objects in Job = {0}", nObjectsInJob)

 Catch ex As Exception

 MessageBox.Show("Prepare Job Error:" + vbCrLf + vbCrLf + ex.Message)

 End Try

End Sub

 Under the assumption that a job file named A1.wmj with at least one object exists, this
function generates the error message #5 because the function-SetObjPos () contains a
value that is to a high for parameter #1 by one. See also 4.5 and 4.4.2!

weldMARK™® Automation Object Model Concepts Chapter 4

MN047 / v3.0.3 weldMARK™ COM Automation Server 19

4.2.6 Visual Basic 6.0 Example

The Visual Basic IDE is informed about the Automation object type information at compile
time by using the Project -> References menu item. To add the weldMARK™ Automation
object reference to your Visual Basic project, use the following steps:

 In the Visual Basic IDE, from the main menu, click Project -> References.

 The References dialog appears.

 In the Available References list, locate the weldMARK™ Type Library item and check the
box.

Chapter 4 weldMARK™® Automation Object Model Concepts

20 weldMARK™ COM Automation Server MN047 / v3.0.3

 If the weldMARK™ Type Library item is not in the Available References list, click on the
Browse button. The Add Reference dialog appears.

 Locate the type library wmCOM.tlb included with the weldMARK™ 3 install. This file is
usually located in \programme\raylase\weldmark\activex. Select the file and click open.

 The weldMARK™ Type Library is added to the list of Available references.

 Check the box indicating you want to add the reference.

 Click OK to close the dialog box.

Now that the weldMARK™ Automation object is available to Visual Basic, add the following
declaration at module global scope:

Dim Marker As New weldMARK.Automate

In this code, weldMARK.Automate is the ProgID of the CoClass, New creates an object, and
the variable Marker is assigned to the default interface of the object, in this case IAutomate.

You can now call methods on the Marker object such as:
Marker.AttachToMarker

weldMARK™® Automation Object Model Concepts Chapter 4

MN047 / v3.0.3 weldMARK™ COM Automation Server 21

4.2.7 Example for VBScript

To write an example VBScript:

 Start Windows Notepad, or any simple text editor.

 Enter the following lines exactly as shown:

' weldMARK.vbs

' This is a demo program to show basic interaction with the COM Serv-

er

MsgBox "weldMARK COM Server Taskbar Icon Demo"+(Chr(13) &

Chr(10))+"Copyright © 2002 Alase Technologies"+(Chr(13) &

Chr(10))+(Chr(13) & Chr(10))+"Click OK to load the COM Server."

' Create the COM object and get a reference to it

Dim marker

Set marker= CreateObject("WeldMARK.Automate")

MsgBox "The weldMARK COM Server is loaded and the taskbar notifica-

tion icon is visible in the bottom right corner of the taskbar (blue

gears)."+(Chr(13) & Chr(10))+(Chr(13) & Chr(10))+"Place your mouse

over the icon and to see the ToolTip. The icon is protected by de-

fault; the right click menu is not available."+(Chr(13) &

Chr(10))+(Chr(13) & Chr(10))+"Click OK to continue"

marker.ShowTrayIcon 0,1

MsgBox "Taskbar notification icon is invisible."+(Chr(13) &

Chr(10))+(Chr(13) & Chr(10))+"Click OK to conti-nue"

marker.ShowTrayIcon 1,0

MsgBox "Taskbar notification icon is visible and un-

protected."+(Chr(13) & Chr(10))+(Chr(13) & Chr(10))+"Place your mouse

over the icon and right click with the mouse to see the context

menu."+(Chr(13) & Chr(10))+"Do not select Terminate Automation Server

at this time."+(Chr(13) & Chr(10))+(Chr(13) & Chr(10))+"Click OK to

continue"

MsgBox "End of demo."+(Chr(13) & Chr(10))+(Chr(13) & Chr(10))+"Click

OK to unload the weldMARK COM Server"

 When you are done editing the file, save it as weldMARK.vbs.

 Browse to the file in Windows Explorer, right click on the file with the mouse, and select
Open.

 The weldMARK™ Automation object will load in memory, indicated by the icon in the sys-
tem tray, and the message boxes will appear.

This simple example demonstrates the potential for controlling weldMARK™ from script files.

Chapter 4 weldMARK™® Automation Object Model Concepts

22 weldMARK™ COM Automation Server MN047 / v3.0.3

4.3 Using the Marker Library

4.3.1 Overview

The architecture of the underlying Marker Library is object oriented by design. JobObjects and
MarkObjects are created in memory, and then maintained in their own lists. The following
diagram illustrates the Marker Library structure:

JobList

Job0
Job1
Job2
Job3
…
…
...

COM Server

ObjectList

Marker Library

Obj0
1
2
3

…
…
...

Obj
Obj
Obj

Obj0

Obj1

Obj0

Obj1

Properties
Methods
…
...

Properties
Methods
…
...

Properties
Methods
…
...

Properties
Methods
…
...

ObjectList

Obj0
1
2
3

…
…
...

Obj
Obj
Obj

Following the C/C++ convention, job- and objectlists are 0 based. So, for example, if the Mar-
kObject list contains 5 (five) objects, the first has an Index value of 0 (zero), the next is 1
(one), and so forth.

weldMARK™® Automation Object Model Concepts Chapter 4

MN047 / v3.0.3 weldMARK™ COM Automation Server 23

4.3.2 Initializing the Marker Library

After an interface pointer has been obtained to Automate, the COM Object initializes all its
resources and loads the Marker Library. After initialization, the client application must check to
see if there are any scan head cards in the PC by calling GetScanCardCount. A result of 0
indicates no card present. The client application should gracefully exit at that time, showing an
appropriate error message.

Because weldMARK™ (the GUI) and the weldMARK™ Automation object cannot be running
at the same time, it may be necessary to detach from the Marker Library to allow the GUI to
attach to it. To detach from the Marker Library, you call ReleaseLibrary. To reattach, you call
AttachToLibrary. When your application first starts up, there is no need to call AttachToLi-
brary, as this is done automatically for you.

The client application may not want users to see or have access to the Notification area icon,
which represents the weldMARK™ Automation object when it is running. To change the be-
havior of the Notification area icon, call ShowTrayIcon, passing the appropriate flags.

4.3.3 Working with JobObjects

You create JobObjects by calling NewJob, passing the name you want to give your new job.
This call passes back the Index value of the new JobObject. The Index value also becomes
the current ActiveJob. All calls made to the Marker Library referencing a JobObject or
MarkObject use the current ActiveJob index. You can change the ActiveJob index by call-
ing SetActiveJob and pass the new Index value. This Index value represents the position of
the JobObject in its list. To find out how many JobObjects are in the list, call GetJobCount.
The Marker Library supports a maximum of 10 JobObjects loaded simultaneously. You can
delete a JobObject from memory by calling CloseJob.

4.3.4 Working with MarkObjects

MarkObjects are added to their corresponding JobObject parent, so set the ActiveJob to the
desired Index. To add a MarkObject, you call one of the mark object creation functions such
as NewBitmap, NewRect, etc. The Index of the new object is passed back when the call com-
pletes. MarkObjects are created in memory with a default location and size, and default Pro-
file. MarkObject positions and sizes can be manipulated by calling functions such as Center-
Obj, SetObjToRect, etc. Calling the corresponding SetXXXAttributes sets specific properties
of the objects themselves. Currently, there are 18 different MarkObject types. You can dis-
cover an object’s type by calling GetObjType passing it’s Index. A MarkObjects marking pa-
rameters (Profile) are set with a call to SetObjProfile. To find out how many MarkObjects are
in the list, call GetObjCount. You can delete a MarkObject from memory by calling DeleteObj.
The ScanCardNum is a property of the MarkObject, and when a MarkObject is first created,
it’s ScanCardNum is set to 0 (zero). If there are multiple scan cards in the PC, MarkObjects
can be assigned to each card with a call to SetScanCardNum.

Chapter 4 weldMARK™® Automation Object Model Concepts

24 weldMARK™ COM Automation Server MN047 / v3.0.3

4.3.5 Working with the Standard I/O card

An interface to the Standard I/O card is provided by the COMServer to allow the programmer
access to the various input and output ports on the card. These ports are directly controlled by
the programmer, and are not set automatically by the software. For example, when using the
weldMARK™ user interface, both the Mark In Progress and the Busy/Ready outputs toggle
automatically at the appropriate times during the execution of a job. When using the COM-
Server, however, these outputs are not set automatically, and must be set using the corre-
sponding commands. In this way, the programmer has complete control over when these
ports change states during the execution of their marking tasks.

4.4 Error Handling
Because the ability to get hold of rich error information from a COM object is important, Mi-
crosoft introduced error objects. Error objects are now the preferred method of receiving rich
error information back from a COM object. The methods used to access the error object differ
between programming languages.

4.4.1 Visual Basic Error Client

Because Visual Basic cannot use the HRESULT returned from a call to the COM server, an-
other technique must be used to extract useful error information. Fortunately, Visual Basic
supports the Err object, which can be used for this purpose. In order to detect all possible
errors that are returned from the COM Server, any code that calls the server should be
wrapped in the On Error GoTo/Error Handler routine, illustrated in the following code snippet:

Private Sub MarkButton_Click()

On Error GoTo ErrorHandler

Marker.MarkObj0,0

Other code…

…

…

ErrorHandler:

MsgBox Err.Description, vbOKOnly, "weldMARK.Automate error"

End Sub

The line OnError GoTo ErrorHandler catches any errors that are returned from the Mark-
er.MarkObj(0,0) function call, and program execution is directed to ErrorHandler. ErrorHandler
uses the Err object, and extracts its Description data member to obtain a description of the
error.

weldMARK™® Automation Object Model Concepts Chapter 4

MN047 / v3.0.3 weldMARK™ COM Automation Server 25

4.4.2 C++ Error Client

In accordance with the COM specifications, each call to the COM server will return an
HRESULT value. HRESULTs are used to return rich error information to a C++ client. Alt-
hough most non-0 HRESULT values indicate an error condition, this is not always the case.
Therefore, it is usually not acceptable to test for a non-0 condition to indicate an error. It is
recommended to use the FAILED macro in the following way:

HRESULT hr=Marker->ShowTrayIcon(true, false);

if (FAILED(hr))

 {

 IErrorInfo* errorinfo;

 WideString errortext;

 ::GetErrorInfo(0.&errorinfo);

 //If NULL, no object available

 if (erorinfo==NULL)

 {

 Application->MessageBox("An unspecified COM Automation

 error has occurred.","", MB_OK);

 return;

 }

 else

 errorinfo->GetDescription(&errortext);

 Application->MessageBox(errortext,"", MB_OK);

 }

Chapter 4 weldMARK™® Automation Object Model Concepts

26 weldMARK™ COM Automation Server MN047 / v3.0.3

If you follow the method 4.2.3 and create a C++ MFC application, which is created by import-
ing the type library wmCOM.tlb, an interface whose methods provide no return values, so no
HRESULT. However, since MFC applications provide convenient exception handling, it is
highly recommended to use the MFC class COleDispatchException, to commit the error mes-
sages just as easily. Assuming there is a job file called A1.wmj, this might look as follows:

void CWmCOMSampleCppDlg::OnPrepareJob()

{

 long nCards = 0L;

 long nObjectsInJob = 0L;

 try

 {

 m_pWMcom->LoadJobFromFile("A1.wmj", &m_iJobID);

 m_pWMcom->GetObjCount(&nObjectsInJob);

 m_pWMcom->SetObjPos(nObjectsInJob - 1L, 100L, 100L);

 }

 catch(COleDispatchException* e)

 {

 TCHAR szMsg[1024] = {0};

 e->GetErrorMessage(szMsg, 1024);

 CString sMsg;

 sMsg.Format("Prepare Job Error:\r\n\r\n%s", szMsg);

 AfxMessageBox(sMsg);

 e->Delete();

 }

}

The exception can be tested, by removing the parameter for # 1, when calling SetOb-JPOS (),
which removes -1L. Thus, the error message is # 5 "ObjIndex out of bounds" solved.

weldMARK™® Automation Object Model Concepts Chapter 4

MN047 / v3.0.3 weldMARK™ COM Automation Server 27

4.5 Extended Error Handling

All error messages, in weldMARK™ COM server, are in English. In order to enable conversion
into other languages, there is an option to prefix the error messages by a number within 7 char-
acters. This 7 characters string part consists of a 6 digit error message-ID and one SPACE char-
acter, as delimiter. Reading the leading error-ID enables programmers to show their own, trans-
lated errortexts according to the list of messages below.
This option is enabled by setting the DWORD registry entry “ShowErrorIds” in:
[HKEY_CURRENT_USER\Software\RAYLASE\weldMARK\SysDefaults] to 1.
There is currently no possibility to activate this option through weldMARK™.
In order to maintain backward compatibility with previous versions of weldMARK™, default value
is 0, which is set during weldMARK™ installation. The defaukt value is 0 (disabled) in case of a
missing entry.
The following table gives Error messages with corresponding Error ID numbers.

ID Error message

0. Generic Automation Failure

1. Marker Library not loaded

2. A required dll file, wmml.DLL, did not load.

3. No jobs currently in memory

4. No objects currently loaded

5. ObjIndex out of bounds

6. ObjName cannot be empty

7. JobIndex out of bounds

8. CurrIndex value out of range

9. NewIndex value out of range

10. No scan head cards found

11. No scan head cards installed

12. System busy

13. Hardware Key not found.

14. Mark not allowed with current Hardware Key.

15. Download to hardware not allowed with current Hardware Key.

16. All objects in job must be assigned to the same scan head card.

17. Not enough scan head card memory to store all objects in job

18. HardwareStart out of bounds

19. Repeat out of bounds

20. Cannot download job to local card hardware

21. Cannot copy object vector list

22. CardNum value out of range

23. HeadNum value out of range

24. Command value out of range

25. ProfileIndex value out of range

26. ProfileIndex out of bounds

27. Markspeed value out of range

28. Jumpspeed value out of range

29. Jumpdelay value out of range

30. Markdelay value out of range

Chapter 4 weldMARK™® Automation Object Model Concepts

28 weldMARK™ COM Automation Server MN047 / v3.0.3

31. Polygondelay value out of range

32. Laseroffdelay value out of range

33. Laserondelay value out of range

34. Laserpower value out of range

35. Frequency value out of range

36. PulseWidth value out of range

37. Taxis value out of range

38. T1 value out of range

39. T2 value out of range

40. Varijumpdelay value out of range

41. Varijumplength value out of range

42. Wobblesize value out of range

43. Wobblefrequency value out of range

44. X value out of range

45. Y value out of range

46. No Standard I/O card detected.

47. File not found:

48. File not found

49. File extension not supported

50. Cannot set graphic file

51. Wrong file extension. Extension must be 'wmj' or 'wlj'.

52. Syntax error in job file

53. Too many jobs loaded

54. Cannot load and/or process file

55. Cannot set laser config file

56. Cannot set laser config file

57. Operator cancelled operation

58. Error reading LT position

59. LT not motorized.

60. LT motorised, but either LT not enabled, motor offline or axis-disabled

61. Motor controller not available.

62. Axis not homed

63. Axes not homed. Please check and try again.

64. No axes demanded to be homed

65. Motor controller card not installed.

66. Axis 1 not enabled.

67. Axis 2 not enabled.

68. Axis 3 not enabled.

69. Axis 4 not enabled.

70. LT Axis out of range.

71. LT Axis not enabled.

72. Error while positioning LT

73. Could not adjust LT position

74. Cannot create new barcode object

weldMARK™® Automation Object Model Concepts Chapter 4

MN047 / v3.0.3 weldMARK™ COM Automation Server 29

75. CharString cannot be empty

76. StartAngle value out of range

77. EndAngle value out of range

78. Sides value out of range

79. FontName cannot be empty

80. Orientation value out of range.

81. Kerning value out of range.

82. Leading value out of range.

83. Styles value out of range.

84. ParagraphStyle value out of range.

85. PulseCount value out of range.

86. WordValue out of range.

87. Object does not contain any closed paths

88. FillSpacing value out of range

89. FillStyle value out of range

90. Slope1 value out of range

91. Slope2 value out of range

92. Note cannot be empty

93. MOTFFlag value out of range

94. EncoderSimFlag value out of range

95. EncoderCal value out of range

96. MarkStartDelay value out of range

97. MOTFAngle value out of range

98. SetControllerConfiguration returned an error

99. Mode value out of range

100. PassCount value out of range

101. Cannot use pens if ObjMarkMode is greater than 1

102. Problems reading correction file installation folder.

103. CodeType value out of range

104. Wrong file extension. Extension must be bmp, jpg, gif, or pcx.

105. Wrong file extension. Must be 'wmj'.

106. Error creating new job

107. A required graphics file referenced by the job could not be found at the specified path.

108. A result of false was returned from the scancard

109. ListNum value out of range

110. WidthReduce value out of range

111. NarrowToWide value out of range

112. QuietZone value out of range

113. Preferences value out of range

114. DotMatrix value out of range

115. Pixels value out of range

116. PixelSep value out of range

117. Contrast value out of range

118. Brightness value out of range

Chapter 4 weldMARK™® Automation Object Model Concepts

30 weldMARK™ COM Automation Server MN047 / v3.0.3

119. InvertPixels value out of range

120. SkipBlack value out of range

121. BlackCorners value out of range

122. ErrorDiffusion value out of range

123. Rows value out of range

124. NumRows value out of range

125. NumColumns value out of range

126. NumPoints value out of range

127. Duration value out of range

128. Paragraph value out of range.

129. Error while generating new text object

130. Cannot import vector graphic

131. OpCode value out of range

132. Empty string

133. No markable characters in string

134. Cannot load bitmap

135. Save Job failed:

136. SpacingGrowth out of range

137. Number of sides for circle approximation out of range

138. Circle diameter out of range

Focus Shifter Chapter 5

MN047 / v3.0.3 weldMARK™ COM Automation Server 31

5 FOCUS SHIFTER
COM server applications can use the full functionality of Focus Shifter feature. The following
rules must be respected:

 Use a 3 axis Scan Head with f-Theta lens so that there is no need for Z-compensation
through the correction file.

 Use the right Scan Head configuration file with Focus Shifter parameters.

 Update the SP-ICE or RLC PCI/USB control card software with support for Focus Shifter.

 Check so that the control card has DIRECT_Z mode enabled (required only for SP-ICE
control card).

There are various types of applications based on weldMARK™ COM server. Those, which
only load jobs created by weldMARK™ GUI and mark them, do not require any additional
changes regarding Focus Shifter.

 The Scan Head configuration file (selected in System > Preferences > Hardware) is loaded
when the system is started. This will set mode to Direct Z and also position the lens so that
it corresponds to Z=0, that is in the middle of the marking field.

 Z-height of each object is defined within the object profile which is send to the card before
the object is marked. This will cause the Z height to adjust automatically to the parameters
read in the Scan Head Configuration file.

5.1 Loading Scan Head Configuration file
At the moment it is not possible to load another Scan Head Configuration file from the COM
server application at run time.

5.2 Creating Objects
If Objects have to be created from a COM server based application, then Z position for each
object can be specified either by changing the default profile (SetDefaultProfile) which is at-
tached to each new object, or by using SetObjProfile() command.

These commands specify Z Height in bits and the same calibration factor is used as for X and
Y. If it would be more convenient to do it in mm or inches then it can be done by using the
following relationship:

Z_ Height [bits] = Z_Height [mm] * calfactor [bits/mm]

The Z Volume or the available Z field size can be obtained by a COM server function
GetLensCalFactorEx.

The Z field size is distributed from Z=0 to +Zmax in beam direction and Z=0 to –Zmin against
the beam direction of laser.

GetLensCalFactorEx command can be used to read the values for ‘calfactor’ and Zmin and
Zmax from the System. ‘Calfactor’ is returned as a floating point number so that higher preci-
sion can be achieved.

Zmin and Zmax are returned in bits. The corresponding height in mm can be calculated by
dividing the values by calfactor.

5.3 Changed/New commands
There is a number of COM server commands which have changed to support the Focus
Shifter feature. They are:

 GetLensFactor_Ex()

All the commands dealing with profiles: GetDefaultProfile(), SetDefaultProfile, GetObjPro-
file(),SetObjProfile().

Chapter 6 Pulsed IPG- and SPI-Laser

32 weldMARK™ COM Automation Server MN047 / v3.0.3

6 PULSED IPG- AND SPI-LASER
Care must be taken so that signals, required for IPG and SPI laser, are managed correctly.

6.1 Initialization
When the COM server is started laser settings are read from the laser_ipg.cfg or laser_spi.cfg
file, defined in the controller.ini file as the active configuration file.

IPG: RAYLASE AG - weldMARK 3

Head Controller Initialization File

Original Filename = controller.ini

Copyright © 2010 RAYLASE AG

[CONTROLLER1]

corrfile1=AS-30-C_0250-1250bo_0400

corrfile2=Y330_10

laserfile=laser_ipg.cfg

…

SPI: RAYLASE AG - weldMARK 3

Head Controller Initialization File

Original Filename = controller.ini

Copyright © 2010 RAYLASE AG

[CONTROLLER1]

corrfile1=AS-30-C_0250-1250bo_0400

corrfile2=Y330_10

laserfile=laser_spi.cfg

…

Laser Type in the laser configuration file must be set:

IPG: Copyright © 2010 RAYLASE AG

Laser Calibration File

Modified 01/04/10

[LASER]

name=IPG Pulsed Laser

type=4

SPI: Copyright © 2010 RAYLASE AG

Laser Calibration File

Modified 01/04/10

[LASER]

name=SPI Laser

type=5

On the controller card side, the laser mode is set to YAG1 (SPI Extended Interface) or YAG2
(IPG Interface, SPI Basic Interface), but within weldMARK™ it must be set to IPG or SPI La-
ser type!

Important: If Set_Mode command is sent from the COM server through

“ScanCardCommand” then YAG1 mode (D5=1, D4=0) or YAG2 mode

(D5=0, D4=0) must be defined for the laser mode!

Pulsed IPG- and SPI-Laser Chapter 6

MN047 / v3.0.3 weldMARK™ COM Automation Server 33

6.2 Mark_In_Progress signal
In order to set laser power correctly, Mark_In_Progress signal must be set 10ms before turning
the laser on and actually marking.
This can be achieved in several ways:

1) The most convenient way of initializing and using the IPG and SPI Laser from the COM

server is if following command sequence is used: LoadJobFromFile; DownloadAllObj;
ScanCardExecute. In this case the COM server generates the Mark_In_Progress signal
and a delay required for the IPG or SPI laser.

2) If objects are downloaded one by one with the DownLoadObj command, or if any of the

Mark Object commands: MarkAllObj, MarkObj, or MarkObjEx is used then
Mark_In_Progress signal must be explicitly set before marking is started.:

 SetMarkInProgressBit(1)
Sets the Mark_In_Progress signal.

 10ms delay

 ScanCardExecute
…
…

 SetMarkInProgressBit(0)
Resets Mark_In_Progress signal to 0, to enable the laser to be correctly turned on the
next time.

3) If a job is created from the COM server via any of the New Object commands (NewText,

NewRectangle, …) then Mark_In_Progress signal can be set at the beginning of the list in
the following way::

 ScanCardCommand(Write_Port_list, port, portValue); port=PortC(12dec, 0CH), and
Mark_In_Progress (Bit 4) in PortValue set to TRUE.

 ScanCardCommand(Long_delay, delay, 0); with delay set to 1000, 1000 x 10mikrosec
-> 10msec

 … various marking commands, and then at the end of the job =>

 ScanCardCommand(Write_Port_list, port, value); port=PortC(12dec, 0CH), and
MarkInProgress (Bit 4) set to FALSE

Chapter 6 Pulsed IPG- and SPI-Laser

34 weldMARK™ COM Automation Server MN047 / v3.0.3

6.3 Adjusting laser parameters and setting the power
Laser parameters and power are sent to control card automatically before marking either a whole
job or an object. No specific actions are required for this from the COM server.

6.4 Checking for Errors of pulsed IPG/SPI Lasers
SPI Laser Error can be checked through GetScanCardInput command:
 GetScanCardInput(CardNum, PortAOffset, *PortAValue),

PortAOffset is set to 8dec (08H).

If the function returns PortAValue, with bit D6=FALSE, then there an Error occurred.

6.5 Resetting Errors of pulsed IPG/SPI Lasers
If an SPI Laser Error occurred, then it must be reset before the laser can be turned on again.
Resetting SPI Laser Error can be done through “SetScanCardOutput” COM server command:

 SetScanCardOutput (CardNum, PortCOffset, PortCValue, unused),

PortCOffest = 12dec (0CH) and
bit D5(Remote_Execute_1) set to TRUE in the PortCValue.

 There should be a delay of minimum 1ms before sending the next command

 SetScanCardOutput (CardNum, PortCOffset, PortCValue, unused),
PortCOffest = 12dec (0CH) and
bit D5(Remote_Execute_1) set to FALSE in the PortCValue

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 35

7 MARKER LIBRARY FUNCTIONS
In this section, the command interface library is documented by function, and then alphabeti-
cally.

7.1 Function Overview
The following list organizes the available commands into functional groups.

Marker Library functions

AttachToMarker
ReleaseMarker
ShowTrayIcon

Scan Card functions

GetScanCardCount
GetScanCardCapacity
GetScanHeadCount
ScanCardCommand
ScanCardExecute
TerminateMark
GetBusyStatus
GetBusyStatusEx
SetMOTFConfig
GetMOTFConfig
SetScanCardOutput
GetScanCardInput
GoToXY

I/O Card functions

IsIOCardInstalled
GetStartProcessBit
SetBusyReadyBit
SetMarkInProgressBit
GetUserInWord
SetProcessEnabledWord
SetUserOutWord

Lens file functions

LoadLensCalFile
GetLensCalFile
GetLensCalFactor
GetLensCalFactorEx

Laser functions

LoadLaserConfigFile
GetLaserConfigFile
GetLaserPowerMinMax
GetLaserName
GetReadStatusWord
EnableLaser
TurnLaserOff
TurnLaserOn

Motor Controller functions

HomeAxes
HomeLTAxis

JobObject functions

GetJobCount
GetJobCorrFile
GetJobCorrFlag
NewJob
SetActiveJob
CloseJob
LoadJobFromFile
SaveJobToFile

MarkObject functions

NewBitmap
SetBitmapAttributes
SetBitmapGrayScaleMode
GetBitmapAttributes
GetBitmapGrayScaleMode
GetBmpEndOfLineDelay
GetBmpLineShiftCorrection
GetBmpSkippedPixelTreshold
SetBmpEndOfLineDelay
SetBmpLineShiftCorrection
SetBmpSkippedPixelTreshold
NewVectorGraphic
SetVectorGraphicAttributes
GetVectorGraphicAttributes
NewText
SetTextAttributes
GetTextAttributes
NewBarcode
SetBarcodeAttributes
SetBarcodeAttributesEx
GetBarcodeAttributes
GetBarcodeAttributesEx
NewLine
NewRect
NewPolygon
SetPolygonAttributes
GetPolygonAttributes
NewDrill
SetDrillAttributes
GetDrillAttributes
GetObjCount
GetObjMemSize
MoveObjInList
DeleteObj
DeleteAllObj
SetObjScanCardNum
GetObjScanCardNum
GetObjVectorList
GetObjFillList
SetObjMarkMode

GetObjMarkMode
SetObjNumPasses
SetObjUsePensFlag
GetObjUsePensFlag
GetObjPens
GetObjNumPasses
SetObjMarkFillFlag
GetObjMarkFillFlag
SetObjMarkOutlineFlag
GetObjMarkOutlineFlag
SetDefaultProfile
GetDefaultProfile
SetObjProfile
GetObjProfile
SetObjName
GetObjName
SetObjFill
SetObjFillEx
GetObjFill
GetObjFillEx
SetObjNote
GetObjNote
MarkObj
MarkObjEx
MarkAllObj
DownloadObject
DownloadAllObj
GetAllObjRect
GetObjRect
IsObjOutOfBounds
GetObjType
GetObjTypeString
CenterObj
OffsetObj
RotateObj
RotateObjEx
ScaleObj
SetObjPos
SetObjSize
SkewObj
SetObjToRect
SetObjCharString
GetObjCharString
SetObjGraphicFile
GetObjGraphicFile

Chapter 7 Marker Library Functions

36 weldMARK™ COM Automation Server MN047 / v3.0.3

7.2 Functions
The following list describes all automation functions in alphabetical order.

AttachToMarker

Purpose Loads the Marker libraries and initializes the hardware.

Implementation HRESULT AttachToMarker (void)

Comments When first loading the COM server, it is not necessary to call this func-
tion. However, if you have called ReleaseMarker, then you must call this
function to regain access to the scan card hardware. Returns S_OK if the
function succeeds.

See Also ReleaseMarker

CenterObj

Purpose Positions the center of an object at the center of the marking field.

Implementation HRESULT CenterObj (int ObjIndex)

Parameters ObjIndex Index of object in the ObjectList.

 Valid range: [0 to (number of objects-1)]

Comments The marking field is described using a Cartesian coordinate system, with
(0,0) at the center of the field, (-32768, -32768) at the bottom left corner,
and (32767, 32767) at the top right corner. Returns S_OK if the function
succeeds.

CloseJob

Purpose Closes a job and clear objects from memory.

Implementation HRESULT CloseJob (int JobIndex)

Parameters JobIndex Index of Job in the JobList

 Valid range: [0 to (number of jobs-1)]

Comments If there are still jobs in the JobList, the Active Job is set to 0; otherwise
the Active Job is set to –1. Returns S_OK if the function succeeds.

DeleteAllObj

Purpose Deletes all objects currently loaded in the Active Job.

Implementation HRESULT DeleteAllObj (void)

Comments Returns S_OK if the function succeeds.

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 37

DeleteObj

Purpose Deletes an object from the Active Job.

Implementation HRESULT DeleteObj (int ObjIndex)

Parameters ObjIndex: Index of object in the ObjectList

Comments Returns S_OK if the function succeeds.

DownloadAllObj

Purpose Copies the vector lists of all objects in the Active Job to the scan card
hardware.

Implementation HRESULT DownloadAllObj (int Orientation, int HardwareStart,
int Repeat)

Parameters Orientation Rotates the marked image relative to screen

Valid values: [0, 90, 180, 270]

HardwareStart Configures card to wait for external start signal on
card.

1 = wait for external start.

Valid values: [0, 1]

Repeat Configures card to continuously process list.

1 = repeat continuously

Valid values: [0, 1]

Comments After calling DownloadAllObj, you must call ScanCardExecute to start the
processing of the list. If there is not enough memory to store all objects in
the Active Job, the function will fail, and an error is returned. You can
discover the capacity of the scan card memory by calling GetScan-
CardCapacity. Calling GetObjMemSize returns the memory size re-
quirements of each object. Returns S_OK if the function succeeds.

See Also DownloadObj, ScanCardExecute, GetScanCardCapacity,
GetObjMemSize

Chapter 7 Marker Library Functions

38 weldMARK™ COM Automation Server MN047 / v3.0.3

DownloadObj

Purpose Copies the vector list of an object in the Active Job to the scan card
hardware.

Implementation HRESULT DownloadObj (int ObjIndex, int Orientation)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Orientation Rotates the marked image relative to screen

Valid values: [0, 90, 180, 270]

Comments Before calling DownloadObj, the scan card list must be opened with a
call to ScanCardCommand, passing the StartList1 or StartList2 parame-
ter. To execute objects downloaded to the scan card, you must first close
the list with a call to ScanCardCommand, passing the SetEndOfList pa-
rameter. The list can then be executed with a call to ScanCardExecute to
start the processing of the list. Returns S_OK if the function succeeds.

See Also DownloadAllObj, ScanCardCommand, ScanCardExecute, GetScan-
CardCapacity, GetObjMemSize

EnableLaser

Purpose Enables or disables the laser.

Implementation HRESULT EnableLaser (int Flag)

Parameters Flag Valid values: [0, 1]

Comments When the laser is disabled, calls to MarkObj, MarkAllObj, etc. will suc-
ceed, but the laser will not turn on. Returns S_OK if the function suc-
ceeds.

See Also MarkObj, MarkAllObj

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 39

GetAllObjRect

Purpose Retrieves the smallest rectangle that fits around all objects in the Active
Job.

Implementation HRESULT GetAllObjRect (float* Left, float* Top, float* Right,
float* Bottom)

Returns Left The x-coordinate of the upper-left corner of the
bounding rectangle.

Top The y-coordinate of the upper-left corner of the
bounding rectangle

Right The x-coordinate of the lower-right corner of the
bounding rectangle.

Bottom The y-coordinate of the lower-right corner of the
bounding rectangle

Comments The marking field is described using a Cartesian coordinate system, with
(0,0) at the center of the field, (-32768, -32768) at the bottom left corner,
and (32767, 32767) at the top right corner. Returns S_OK if the function
succeeds.

Chapter 7 Marker Library Functions

40 weldMARK™ COM Automation Server MN047 / v3.0.3

GetBarcodeAttributes
GetBarcodeAttributesEx

Purpose Gets the attributes of a barcode object.

Implementation HRESULT GetBarcodeAttributesEx(int ObjIndex, int* WidthReduce,
int* NarrowToWide, int* QuietZone, int* Preferences, int* DotMatrix,
int* Pixels, int* PulseCount, int* SpaceGrowth, int* CircleNumSides, int*
CircleDiameter)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns WidthReduce The amount of reduction in the width of all bars. Valid
for 1D codes only.

Units: % of bar width

 NarrowToWide The change in width ratio of the narrow and wide bars
from default. Only valid for 1D codes. For PDF417, it
represents the aspect ratio of the height to width of the
entire barcode.

Units: % of bar width

 QuietZone When inverting a barcode, the amount of quiet space
surrounding the code.

DataMatrix, QR code, PDF417 = number of cells

Units: 1D = % of code width.

 Preferences See SetBarcodeAttributes for Preferences details.

 DotMatrix The dot matrix flag.
Set to 1 (one) to enable dot matrix mode.

 Pixels For dot matrix mode, depends on barcode type:

1D codes: The spacing between adjacent pixels

Units: bits

2D codes: The number of rows and columns in the
pixel array in each cell.

 PulseCount The number of laser pulses fired at each dot using the
current laser frequency and pulse width settings.

1) SpaceGrowth Filling a 2D barcode with circle dots.

Increases or reduces the distance between circle dots.

Units: ± 100% of the circle diameter

1) CircleNumSides Filling a 2D barcode with circle dots.

Number of segments to describe a circle.

1) CircleDiameter Filling a 2D barcode with circle dots.

Definition of the circle diameter in Unit bits

Comments Returns S_OK if the function succeeds.

See Also SetBarcodeAttributes, SetBarcodeAttributesEx

1) GetBarcodeAttributesEx only

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 41

GetBitmapAttributes

Purpose Retrieves the attributes of a Bitmap object.

Implementation HRESULT GetBitmapAttributes (int ObjIndex, int* PixelSep,
int* Contrast, int* Brightness, int* InvertPixels, int* SkipBlack,
int* BlackCorners, int* ErrorDiffusion)

Parameters ObjIndex Index of object in the ObjectList.

Valid range: [0 to (number of objects-1)]

Returns PixelSep Distance between adjacent pixels.

Units: bits

Contrast A relative value affecting the difference between the
darkest and lightest pixels.

Brightness A relative value affecting the overall brightness of all
pixels.

InvertPixels Flag indicating whether the pixels are inverted (black
to white).

0 = not inverted
1 = inverted.

SkipBlack Flag indicating whether black pixels are jumped over
when marking the bitmap.

0 = Do not skip
1 = Skip black pixels

BlackCorners Flag indicating what color to make pixels in the cor-
ners if the bitmap has been rotated to an angle other
that 90, 180 or 270.

0 = white
1 = black

ErrorDiffusion Flag indicating whether the Error Diffusion algorithm
has been applied to the bitmap.

0 = no error diffusion
1 = error diffusion applied.

Comments Returns S_OK if function succeeds.

See Also SetBitmapAttributes

Chapter 7 Marker Library Functions

42 weldMARK™ COM Automation Server MN047 / v3.0.3

GetBitmapGrayScaleMode

Purpose Retrieves the mode defining the way in which the laser power is con-
trolled when marking grayscale bitmaps.

Implementation HRESULT GetBitmapGrayScaleMode (int ObjIndex, int* Mode)

Parameters ObjIndex Index of object in the ObjectList.

Returns Mode Value of the used bitmap algorithm that was attached to the
object.

 0 = POINT_AND_SHOOT_ALG

 4 = ANALOG_POWERSET_ALG

 5 = DIGITAL_POWERSET_ALG

 9 = PWM_ALG

Comments For ErrorDiffusion mode use function GetBitmapAttributes.

Returns S_OK if function succeeds.

See Also SetBitmapGrayScaleMode, GetBitmapAttributes, SetBitmapAttributes

GetBmpEndOfLineDelay

Purpose Returns the actual value for delaying the mark process at the end of
each line and after jumping to the start of the next line.

Implementation HRESULT GetBmpEndOfLineDelay (int ObjIndex, int Delay)

Parameters ObjIndex Index of object in the ObjectList.

Valid range: [0 to (number of objects-1)]

Delay Valid range: [0 to 20000] µSec

Comments Returns S_OK if function succeeds.

See Also SetBmpEndOfLineDelay

GetBmpLineShiftCorrection

Purpose Returns the correction value, currently programmed to compensate the
shift errors while marking bitmap object in bidirectional mode.

Implementation HRESULT GetBmpLineShiftCorrection (int ObjIndex, int* Correction)

Parameters ObjIndex Index of object in the ObjectList.

Valid range: [0 to (number of objects-1)]

Correction Valid range: [0 to 65500] bits

Comments Returns S_OK if function succeeds.

See Also SetBmpLineShiftCorrection

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 43

GetBmpSkippedPixelTreshold

Purpose Returns the currently programmed threshold value, which was pro-
grammed to skip low gray values at the marking of bitmap objects.

Implementation HRESULT GetBmpSkippedPixelTreshold (int ObjIndex, int MinPixel)

Parameters ObjIndex Index of object in the ObjectList.

Valid range: [0 to (number of objects-1)]

MinPixel Value ≤ 1 No skip of white pixels

Value ≥ 2 Skips processing of pixel with greyscale
value < the defined treshold value

Comments Returns S_OK if function succeeds.

See Also SetBmpSkippedPixelTreshold

GetBusyStatus

Purpose Retrieves the system busy status.

Implementation HRESULT GetBusyStatus (int CardNum, int* BusyFlag)

Parameters CardNum Index of scan head card

Valid range: [0 to (number of cards-1)]

Returns BusyFlag 0 = ready
1 = busy

Comments The range of scan head card index values can be determined by calling
GetScanCardCount. Whenever the system is currently executing an
object, the Busy status is 1 (one). An application must call this function
before making any call to modify or execute an object.

Returns S_OK if function succeeds.

See Also GetBusyStatusEx

Chapter 7 Marker Library Functions

44 weldMARK™ COM Automation Server MN047 / v3.0.3

GetBusyStatusEx

Purpose Retrieves the system busy status, external start count, and hardware
stop status.

Implementation HRESULT GetBusyStatus (int CardNum, int* ListLoading, int* CardBusy,
int*ExtStarts, int* HardwareStop)

Parameters CardNum Index of scan head card

 Valid range: [0 to (number of cards-1)]

Returns ListLoading 0 = idle
1 = list actively loading vectors

CardBusy 0 = idle
1 = card actively executing vector list

ExtStarts The number of External Starts received on the card
hardware since the last card reset.

HardwareStop 0 = no hardware stops
1 = a hardware stop has been received since the last
card reset

Comments The range of scan head card index values can be determined by calling
GetScanCardCount. An application must call this function before making
any call to modify or execute an object. Returns S_OK if function suc-
ceeds.

See Also GetBusyStatus

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 45

GetDefaultProfile

Purpose Retrieves the default Profile settings applied to all new objects.

Implementation HRESULT GetDefaultProfile (int ProfileIndex, int* Mode, int* PassCount,
double* Markspeed, double* Jumpspeed, int* Jumpdelay, int* Markdelay,
int* Polygondelay, float* Laserpower, int* Laseroffdelay,
int* Laserondelay, int* TAxis, double* T1, int* T2, int* Unused,
int* Varijumpdelay, int* Varijumplength, int* Wobblesize,
double* Wobblefrequency, int* Varipolydelay)

Parameters ProfileIndex Index of the Profile.

 Valid range: [0 to 7]

Returns Mode See SetObjMarkMode for a description of this pa-
rameter.

PassCount See SetObjNumPasses for a description of this pa-
rameter.

MarkSpeed Defines the speed of the laser spot while marking.

Units: bits/mm

Jumpspeed Defines the speed at which the mirrors jump to the
next marking vector.

Units: bits/mm

Jumpdelay Defines the delay after a jump and before the next
marking vector starts.

Units: µSec

Markdelay Defines the delay between a marking vector and a
jump vector.

Units: µSec

Polygondelay Defines the delay between contiguous marking vec-
tors.

Units: µSec

Laserpower Defines the laser power for non CO2-type lasers.

Valid range: [0 to 100] % (percent)

Note: Laserpower for CO2- type lasers is defined as:
Duty Cycle (percent) = 0.1 × T2 [µs] × T1 [kHz]

Laseroffdelay Defines the delay after the last marking vector finish-
es and the laser is turned off.

Units: µSec

Chapter 7 Marker Library Functions

46 weldMARK™ COM Automation Server MN047 / v3.0.3

 Laserondelay Defines the delay after a marking vector starts
and the laser is turned on.

Units: µSec

TAxis Defines the Z position of the object. +Z is toward
the scan head and –Z away from the scan head.
Position is defined in bits and the same calibra-
tion factor is used as for x and y.

Z field size is limited by the available Linear
Translator movement. Values for Zmin and
Zmax are defined in the scan head configuration
file and can be read with GetLensCalFactorEx
command.

Units: bits

Valid range: [Zmin to Zmax]

T1 Defines the frequency of the laser modulation
signal.

Units: kHz

T2 Defines the pulse width of the laser modulation
signal.

Units: µSec

Unused Reserved for future use.

Varijumpdelay Defines the delay after a jump and before the
next marking vector starts if variable jump delay
is in effect.

Units: µSec

Varijumplength Defines the length of a vector, at which any vec-
tor that is longer will use the Varijumpdelay pa-
rameter, and any vector that is shorter will use
the Jumpdelay parameter.

Units: bits

Wobblesize The diameter of the circle created when the spot
is dithered.

Units: Bits

Wobblefrequency The frequency of the laser spot as it dithers
around the circle defined in Wobblesize.

Units: Hz (cycles per second)

Unused Reserved

Varipolydelay Reserved

Comments The Mode and PassCount parameters are global to all four individual
Profiles. Returns S_OK if the function succeeds.

See Also SetObjProfile, GetObjProfile, SetDefaultProfile, SetObjMarkMode,
SetObjNumPasses

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 47

GetDrillAttributes

Purpose Returns the attributes of a drill object.

Implementation HRESULT GetDrillAttributes (int ObjIndex, int* Rows, int* Columns,
int* NumPoints, int* Duration)

Parameters ObjIndex: Index of object in the ObjectList

 Valid range: [0 to (number of objects-1)]

Returns Rows The number of rows in the point array

Columns The number of columns in the point array

NumPoints The total number of points in the point array

Duration Number of pulses the laser will fire at each point.

Comments Returns S_OK if function succeeds.

See Also SetDrillAttributes

GetJobCount

Purpose Returns the number of jobs currently in memory.

Implementation HRESULT GetJobCount (int* JobCount)

Returns JobCount The job count.

Comments Returns S_OK if function succeeds.

See Also SetActiveJob, NewJob, CloseJob

GetJobCorrFile

Purpose Gets the full pathname of the lens correction file used in the active job

Implementation HRESULT GetJobCorrFile (BSTR* CalFile)

Returns CalFile Path and name of the correction file associated with
the job.

Comments Returns S_OK if function succeeds.

See Also LoadJobFromFile, LoadLensCalFile

GetJobCorrFlag

Purpose Retrieves the ‘Use job correction file’ flag from the active job.

Implementation HRESULT GetCorrFlag (int* JobCorrFlag)

Returns JobCorrFlag 0: do not use job correction file
1: use job correction file

Comments Returns S_OK if function succeeds.

See Also LoadJobFromFile, LoadLensCalFile

Chapter 7 Marker Library Functions

48 weldMARK™ COM Automation Server MN047 / v3.0.3

GetLaserConfigFile

Purpose Returns the fully qualified filename of the laser config file.

Implementation HRESULT GetLaserConfigFile (int CardNum, BSTR* ConfigFile)

Parameters CardNum Index of scan head card

Valid range: [0 to (number of cards-1)]

Returns ConfigFile: The fully qualified filename of the laser config file.

Comments Returns S_OK if function succeeds.

See Also LoadLaserConfigFile

GetLaserName

Purpose Returns the name of the laser from the currently loaded laser config file.

Implementation HRESULT GetLaserName (int CardNum, BSTR* LaserName)

Parameters CardNum Index of scan head card

Valid range: [0 to (number of cards-1)]

Returns LaserName The name of the laser in the laser config file

Comments Returns S_OK if function succeeds.

GetLaserPowerMinMax

Purpose Gets the minimum and maximum allowable laser power settings.

Implementation HRESULT GetLaserPowerMinMax (int CardNum, int* Min, int* Max)

Parameters CardNum Index of scan head card

Valid range: [0 to (number of cards-1)]

Returns Min The minimum valid laser power value.

Units: % (percent)

Max The maximum valid laser power value.

Units: % (percent)

Comments Use GetLaserPowerMinMax to discover the upper and lower range for
the laser power settings. These values must be used to range check
when calling SetObjProfile or SetDefaultProfile.

Returns S_OK if function succeeds.

See Also SetObjProfile, SetDefaultProfile

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 49

GetLensCalFactor

Purpose Gets the calibration factor in bits/mm of the specific scan head lens file.

Implementation HRESULT GetLensCalFactor (int CardNum, int HeadNum,
int* CalFactor)

Parameters CardNum Index of scan head card.

Valid range: [0 to (number of cards-1)]

HeadNum Index of scan head.

Valid range: [0 to (number of heads-1)]

Returns CalFactor The calibration factor.

Units:bits/mm

Comments Use the scan head calibration factor to convert dimensional data from
bits into real world dimensions. Each SP-ICE scan card can have up to
four scan heads attached (master/slave), the RLC scan card can have
just one scan head attached. Use GetScanHeadCount to discover the
number of heads attached to a specific card.

Returns S_OK if function succeeds.

See Also LoadLensCalFile, GetScanHeadCount, GetLensCalFactorEx

Chapter 7 Marker Library Functions

50 weldMARK™ COM Automation Server MN047 / v3.0.3

GetLensCalFactorEx

Purpose Gets the calibration factor in bits/mm of the specific scan head lens file.

Implementation HRESULT GetLensCalFactorEx (int CardNum, int HeadNum,
int* CalFactor, int* Zmin, int* Zmax)

Parameters CardNum Index of scan head card.

 Valid range: [0 to (number of cards-1)]

HeadNum Index of scan head.

 Valid range: [0 to (number of heads-1)]
for SP-ICE, RLC-USB, RLC-PCI control cards always
set to 0

Returns CalFactor Calibration factor
Units: bits/mm

Zmin Minimum allowed Z position
Units: bits/mm
Range: +/-32767

Zmax Maximum allowed Z position
Units: bits/mm
Range: +/-32767

Comments Use the scan head calibration factor to convert dimensional data from
bits into real world dimensions.
This command is similar to GetLensCalFactor, only it returns a float val-
ue for CalFactor and not an integer. It also returns values for Zmin and
Zmax which define the available Z volume.
Intended use for Focus Shifter.

Returns S_OK if function succeeds.

See Also LoadLensCalFile, GetScanHeadCount, GetLensCalFactor

GetLensCalFile

Purpose Gets the fully qualified filename of the lens correction file used by a spe-
cific scan head.

Implementation HRESULT GetLensCalFile (int CardNum, int HeadNum, BSTR* CalFile)

Parameters CardNum Index of scan head card

Valid range: [0 to (number of cards-1)]

HeadNum Index of scan head.

Valid range: [0 to (number of heads-1)]

Returns CalFile The fully qualified lens correction file.

Comments Returns S_OK if function succeeds.

See Also LoadLensCalFile

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 51

GetMOTFConfig

Purpose Gets the Mark on the Fly configuration parameters.

Implementation HRESULT GetMOTFConfig (int CardNum, int* MOTFFlag,
int* EncoderSimFlag, double* EncoderCal, int* MarkStartDelay,
double* MOTFAngle)

Parameters CardNum Index of scan head card.

Valid range: [0 to (number of cards-1)]

Returns MOTFFlag The Mark on the Fly flag.

0 = disable Mark on the Fly
1 = enable.

EncoderSimFlag The encoder simulation flag.
1 = simulate an encoder

EncoderCal The calibration factor of the encoder.

Units: counts/mm

MarkStartDelay The number of encoder counts to wait before
starting the mark.

Units: counts

MOTFAngle The angular orientation of the moving part with
respect to the x-axis.

Units: degrees

Comments For a part that is moving along the x-axis in the direction of increasing x,
MOTFAngle is 0. For a part that is moving along the y-axis in the direc-
tion of increasing y, MOTFAngle is 90, etc. Returns S_OK if the function
succeeds.

See Also SetMOTFConfig

GetObjCharString

Purpose Retrieve the Character String value of a Text object or Barcode object.

Implementation HRESULT GetObjCharString (int ObjIndex, BSTR* CharString)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns CharString The Character String value

Comments Returns S_OK if function succeeds

Chapter 7 Marker Library Functions

52 weldMARK™ COM Automation Server MN047 / v3.0.3

GetObjCount

Purpose Gets the number of objects in the Active Job.

Implementation HRESULT GetObjCount (int* ObjCount)

Returns ObjCount The number of objects in the Active Job

Comments The ObjectList is 0 based, so if GetObjCount returns 10, the loaded ob-
jects are numbered 0-9. Returns S_OK if function succeeds.

GetObjFill
GetObjFillEx

Purpose Gets fill parameters of an object.

Implementation HRESULT GetObjFill (int ObjIndex, int* FillSpacing, int* FillOffset,
int* Slope1, int* Slope2, int* FillStyle)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns FillSpacing The distance between adjacent fill lines.

Units: bits

1) FillOffset The distance between any endpoint of filling
hatchlines and the outlines of the object.

Units: bits

 Slope1 The angle with respect to the x-axis of the first set
of fill lines.

 Slope2 The angle with respect to the x-axis of the second
set of fill lines. (for crosshatch)

 FillStyle The fill style.

0 = parallel lines
1 = crosshatch
2 = bidirectional
3 = bidirectional and crosshatch
6 = bidirectional using meanderfill
7 = bidirectional+crosshatch using meanderfill

Comments Only objects with closed paths can be filled. Returns S_OK if the function
succeeds.

See Also SetObjFill

1) FillOffsetEx only

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 53

GetObjFillList

Purpose Returns a SAFEARRAY containing a list of vector commands that de-
scribe an objects fill image.

Implementation HRESULT GetObjFillList (int ObjIndex, SAFEARRAY(int)* ListArray)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns ListArray Pointer to the SAFEARRAY containing the vector
commands.

Comments The values in the safe array are listed in sets of three:

Parameter1 Drawing command.
0 = MoveTo
1 = LineTo

Parameter2 X coordinate

Parameter3 Y coordinate

If using C/C++, the programmer is responsible for releasing the
SAFEARRAY memory when done with the array with calls to:
SafeArrayUnaccessData(SAFEARRAY*);
SafeArrayDestroy(SAFEARRAY*);

The above calls are not necessary when using VisualBasic, as VB does
the memory management automatically. See the sample source code
files included with the weldMARK™ 3 installation package for details on
how to implement calls using SAFEARRAYS.
Returns S_OK if the function succeeds.

GetObjGraphicFile

Purpose Gets the fully qualified filename containing the source vector graphic
data.

Implementation HRESULT GetObjGraphicFile (int ObjIndex, BSTR* GraphicFile)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns GraphicFile The fully qualified filename containing the source
vector graphic data.

Comments Returns S_OK if function succeeds.

See Also SetObjGraphicFile

Chapter 7 Marker Library Functions

54 weldMARK™ COM Automation Server MN047 / v3.0.3

GetObjMarkFillFlag

Purpose Gets the MarkFill flag of an object.

Implementation HRESULT GetObjMarkFillFlag (int ObjIndex, int* MarkFillFlag)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns MarkFillFlag The MarkFill flag.

0 = no mark
1 = mark

Comments If the flag is set to 1 (one), the objects fill will mark.
Returns S_OK if function succeeds.

See Also GetObjMarkOutlineFlag

GetObjMarkOutlineFlag

Purpose Gets the MarkOutline flag of an object.

Implementation HRESULT GetObjMarkOutlineFlag (int ObjIndex, int* MarkOutlineFlag)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns MarkOutlineFlag The MarkOutline flag.

0 = no mark
1 = mark

Comments If the flag is set to 1 (one), the objects outline will mark.
Returns S_OK if function succeeds.

See Also GetObjMarkFillFlag

GetObjMemSize

Purpose Gets the scan card list memory size requirements of an object.

Implementation HRESULT GetObjMemSize (int ObjIndex, int* Size)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns Size The number of memory locations required to store
object in the scan card list.

Comments Use GetObjMemSize to determine how many objects can fit into the
scan card list memory. You can discover the size of the scan card list by
calling GetScanCardCapacity. This function is used when intending to
call DownloadObj and DownloadAllObj. Returns S_OK if function suc-
ceeds.

See Also GetScanCardCapacity, DownloadObj, DownloadAllObj

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 55

GetObjMarkMode

Purpose Gets the current MarkMode of an object.

Implementation HRESULT GetObjMarkMode (int ObjIndex, int* Mode)

Parameters ObjIndex Index of object in the ObjectList

 Valid range: [0 to (number of objects-1)]

Returns Mode The current MarkMode, which can have the following val-
ues:

0 = Mark object once. NumPasses is ignored.

1 = Mark object using the value of NumPasses.

2 = Mark object with two passes, where:

 Pass1 uses Profile0
 Pass2 uses Profile1

3 = Mark object with three passes, where:

 Pass1 uses Profile0
 Pass2 uses Profile1
 Pass3 uses Profile2

4 = Mark object with four passes, where:

 Pass1 uses Profile0
 Pass2 uses Profile1
 Pass3 uses Profile2
 Pass4 uses Profile3

Comments Use SetObjNumPasses to set the NumPasses value of an object. Use
SetObjProfile to change the profile settings of an object.

Returns S_OK if function succeeds.

See Also SetObjNumPasses, SetObjProfile

GetObjName

Purpose Retrieves the object name.

Implementation HRESULT GetObjName (int ObjIndex, BSTR* ObjName)

Parameters ObjIndex Index of object in the ObjectList

 Valid range: [0 to (number of objects-1)]

Returns ObjName The object name.

Comments Returns S_OK if the function succeeds.

See Also SetObjName

Chapter 7 Marker Library Functions

56 weldMARK™ COM Automation Server MN047 / v3.0.3

GetObjNote

Purpose Gets the note stored in the object.

Implementation HRESULT GetObjNote (int ObjIndex, BSTR* Note)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns Note The note stored in the object.

Comments Returns S_OK if function succeeds.

See Also SetObjNote

GetObjNumPasses

Purpose Gets the NumPasses value of an object.

Implementation HRESULT GetObjNumPasses (int ObjIndex, int* PassCount)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns PassCount The number of times to mark the object.

Comments The use of NumPasses depends on the objects MarkMode setting. Use
GetObjMarkMode to discover the current setting, and SetObjMarkMode
to change it. Returns S_OK if function succeeds.

See Also SetObjNumPasses, GetObjMarkMode, SetObjMarkMode

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 57

GetObjPens

Purpose Gets the pens contained in the object.

Implementation HRESULT GetObjPens (int ObjIndex, int* Pen1, int* Pen2, int* Pen3,
int* Pen4, int* Pen5, int* Pen6, int* Pen7, int* Pen8)

Parameters ObjIndex Index of object in the ObjectList

 Valid range: [0 to (number of objects-1)]

Returns Pen1 The pen flag. 0 = Pen not found, 1 = Contains Pen1.

Pen2 The pen flag. 0 = Pen not found, 1 = Contains Pen2.

Pen3 The pen flag. 0 = Pen not found, 1 = Contains Pen3.

Pen4 The pen flag. 0 = Pen not found, 1 = Contains Pen4.

Pen5 The pen flag. 0 = Pen not found, 1 = Contains Pen5.

Pen6 The pen flag. 0 = Pen not found, 1 = Contains Pen6.

Pen7 The pen flag. 0 = Pen not found, 1 = Contains Pen7.

Pen8 The pen flag. 0 = Pen not found, 1 = Contains Pen8.

Comments If the object contains pen information (usually in *.plt files), the Profile
used to mark the object is dynamically selected during the marking of the
object by the current pen using the following mapping:

Pen Number Uses Profile

1 0

2 1

3 2

4 3

5 4

6 5

7 6

8 7

You can turn the pen function on or off by calling SetObjUsePensFlag.
Returns S_OK if function succeeds.

See Also SetObjUsePensFlag, GetObjUsePensFlag

Chapter 7 Marker Library Functions

58 weldMARK™ COM Automation Server MN047 / v3.0.3

GetObjProfile

Purpose Retrieve the Profile settings for a mark object.

Implementation HRESULT GetObjProfile (int ObjIndex, int ProfileIndex,
double* Markspeed, double* Jumpspeed, int* Jumpdelay, int* Markdelay,
int* Polygondelay, float* Laserpower, int* Laseroffdelay,
int* Laserondelay, int* TAxis, double* T1, int* T2, int* Unused,
int* Varijumpdelay, int* Varijumplength, int* Wobblesize,
double* Wobblefrequency, int* Autosegmentation, int* Varipolydelay)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

ProfileIndex Index of Profile

Valid range: [0 to 7]

Returns MarkSpeed Defines the speed of the laser spot while marking.

Units: bits/mm

Jumpspeed Defines the speed at which the mirrors jump to the
next marking vector.

Units: bits/mm

Jumpdelay Defines the delay after a jump and before the next
marking vector starts.

Units: µSec

Markdelay Defines the delay between a marking vector and a
jump vector.

Units: µSec

Polygondelay Defines the delay between contiguous marking vec-
tors.

Units: µSec

Laserpower Defines the laser power for non CO2-type lasers.

Valid range: [0 to 100] % (percent)

Note: Laserpower for CO2- type lasers is defined as:
Duty Cycle (percent) = 0.1 × T2 [µs] × T1 [kHz]

Laseroffdelay Defines the delay after the last marking vector finish-
es and the laser is turned off.

Units: µSec

Laserondelay Defines the delay after a marking vector starts and
the laser is turned on.

Units: µSec

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 59

 TAxis Defines the Z position of the object.
+Z is toward the scan head and
–Z away from the scan head.
Position is defined in bits and the same calibra-
tion factor is used as for x and y.

Z field size is limited by the available Linear
Translator movement. Values for Zmin and
Zmax are defined in the scan head configuration
file and can be read with GetLensCalFactorEx
command.

Units: bits

Valid range: [Zmin to Zmax]

T1 Defines the frequency of the laser modulation
signal.

Units: kHz

T2 Defines the pulse width of the laser modulation
signal.

Units: µSec

Unused Reserved for future use.

Varijumpdelay Defines the delay after a jump and before the
next marking vector starts if variable jump delay
is in effect.

Units: µSec

Varijumplength Defines the length of a vector, at which any vec-
tor that is longer will use the Varijumpdelay pa-
rameter, and any vector that is shorter will use
the Jumpdelay parameter.

Units: bits

Wobblesize The diameter of the circle created when the spot
is dithered.

Units: bits

Wobblefrequency The frequency of the laser spot as it dithers
around the circle defined in Wobblesize.

Units: Hz (cycles per second)

Unused Reserved

Varipolydelay Reserved

Comments An object has eight profiles available, Profile0 to Profile7.

Returns S_OK if the function succeeds.

See Also SetObjProfile, SetDefaultProfile, GetDefaultProfile

Chapter 7 Marker Library Functions

60 weldMARK™ COM Automation Server MN047 / v3.0.3

GetObjRect

Purpose Retrieve the position and size of an object.

Implementation HRESULT GetObjRect (int ObjIndex, float* Left, float* Top, float* Right,
float* Bottom)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns Left The x-coordinate of the upper-left corner of the
bounding rectangle.

Top The y-coordinate of the upper-left corner of the
bounding rectangle

Right The x-coordinate of the lower-right corner of the
bounding rectangle.

Bottom The y-coordinate of the lower-right corner of the
bounding rectangle

Comments The marking field is described using a Cartesian coordinate system, with
(0,0) at the center of the field, (-32768, -32768) at the bottom left corner,
and (32767, 32767) at the top right corner. Every MarkObject has a
bounding rectangle, which describes the smallest rectangle that will fit
around the object.

Returns S_OK if the function succeeds.

See Also GetAllObjRect

GetObjScanCardNum

Purpose Get the scan card index number of an object.

Implementation HRESULT GetObjScanCardNum (int ObjIndex, int* CardNum)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns CardNum Index of scan head card.

Comments An objects scan head card index controls which card is used when mark-
ing the object. When an object is initially created, it has a CardNum of 0.
If there is only one scan card in use, there is no need to call this function.

Returns S_OK if the function succeeds.

See Also SetScanCardNum

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 61

GetObjType

Purpose Gets the object type of an object.

Implementation HRESULT GetObjType (int ObjIndex, int* ObjType)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns ObjType The numerical object type, which can be one of the fol-
lowing values:

CAD Graphic 1

Polyline 2

Bezier 3

PDF 4/7

Barcode 5

Excellon2 Graphic 6

MCL Graphic 7

EPS Graphic 8

DXF Graphic 9

System Line 10

System Rectangle 11

System Polygon 12

PLT Graphic 13

EMF Graphic 14

WLO Graphic 15

Text 16

System Drill 17

Barcode 39 18

Barcode CodaBar 19

Barcode 93 20

Barcode 128 21

Barcode 2 of 5 22

Barcode PostNET 23

Barcode UPC 24

Barcode EAN 25

DataMatrix 26

QRCode 27

Bitmap Graphic 28

WaitOnPortState I/O 29

SetPort I/O 30

TimeDelay 31

InfoMsgBox 32

Generic Motor Controller 33

XY Table Controller 34

Rotary Indexer Controller 35

Custom Axis Controller 36

Comments Returns S_OK if function succeeds.

Chapter 7 Marker Library Functions

62 weldMARK™ COM Automation Server MN047 / v3.0.3

GetObjTypeString

Purpose Gets a character string description of the object type.

Implementation HRESULT GetObjTypeString (int ObjIndex, BSTR* TypeString)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns TypeString The string representation of the object type.

Comments Returns S_OK if function succeeds

GetObjUsePensFlag

Purpose Gets the pens flag from an object.

Implementation HRESULT GetObjUsePensFlag (int ObjIndex, int* Flag)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns Flag The pens flag.

0 = Do not use pens
1 = Use pens.

Comments If the object contains pen information (usually in *.plt files), the Profile
used to mark the object is selected by the current pen.

Returns S_OK if function succeeds.

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 63

GetObjVectorList

Purpose Returns a SAFEARRAY containing a list of vector commands that de-
scribe an objects image.

Implementation HRESULT GetObjVectorList (int ObjIndex, SAFEARRAY(int)* ListArray)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns ListArray Pointer to the SAFEARRAY containing the vector com-
mands.

Comments The values in the safe array are listed in sets of three:

Parameter1: Drawing command. 0 = MoveTo, 1 = LineTo, 2=SetPen, …
Parameter2: X coordinate or Pen number
Parameter3: Y coordinate

If using C/C++, the programmer is responsible for releasing the
SAFEARRAY memory when done with the array with calls to:

SafeArrayUnaccessData(SAFEARRAY*);
SafeArrayDestroy(SAFEARRAY*);

The above calls are not necessary when using VisualBasic, as VB does
the memory management automatically. See the sample source code
files included with the weldMARK™ 1.0 installation package for details
on how to implement calls using SAFEARRAYS.

Returns S_OK if the function succeeds.

GetPolygonAttributes

Purpose Retrieve the attributes of a polygon object.

Implementation HRESULT GetPolygonAttributes (int ObjIndex, int* StartAngle,
int* EndAngle, int* Sides)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns StartAngle The starting angular direction of the polygon. 0 (zero)
degrees corresponds to the 12:00 position.

Units: degrees

EndAngle The ending angular direction of the polygon. 360 de-
grees corresponds to the 12:00 position.

Units: degrees

NumSides The number of straight line segments in the polygon.

Comments Returns S_OK if the function succeeds.

See Also SetPolygonAttributes

Chapter 7 Marker Library Functions

64 weldMARK™ COM Automation Server MN047 / v3.0.3

GetReadStatusWord

Purpose Reads the status word from SP-ICE, RLC-USB, RLC-PCI.

Implementation HRESULT GetReadStatusWord (int CardNum, int Status)

Parameters CardNum Index of scan head card

Valid range: [0 to (number of cards-1)]

Returns Status Bit 0 Load1 Indicates that list 1 is open for data input
and all following list commands will be
stored in it.

 Bit 1 Load2 Indicates that list 2 is open for data input
and all following list commands will be
stored in it.

 Bit 2 Ready1 Indicates that list 1 has been filled and
closed.

 Bit 3 Ready2 Indicates that list 2 has been filled and
closed.

 Bit 4 Busy1 Indicates that list 1 is being executed.

 Bit 5 Busy2 Indicates that list 2 is being executed.

 Bit 6 Busy Indicates that one of the lists is being exe-
cuted.

 Bit 7 LaserOn Indicates that laser is on.

 Bit 8 Scan Complete Indicates that scanning was finished either
regularly at the end of the list or inter-
rupted during execution.

 Bit 9 Previously used for indication that manual
operation is switched on.

 Bit 10 Previously used for manual movement
indicating that scanners are moved with
control command.

 Bit 11 Marking Busy Indicates that marking is not yet finished –
this occurs when there are still commands
in the output buffer to be processed even
though all list commands have been inter-
preted.

 Bit 12 not used

 Bit 13 not used

 Bit 15 STOP Marking The hardware signal STOP_MARK was
received (through port C). Laser will be
switched off list execution stopped.

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 65

GetScanCardCapacity

Purpose Get the size of the scan cards memory buffer.

Implementation HRESULT GetScanCardCapacity (int CardNum, int* Capacity)

Parameters CardNum Index of scan head card

Valid range: [0 to (number of cards-1)]

Returns Capacity The number of available storage locations in the scan
card memory buffer.

Comments Use this command to determine how much vector list memory is availa-
ble in the scan card.

When using MarkObj or MarkAllObj, this command is not necessary, as
the COM Server manages the moving of objects into the memory.

When downloading objects for storage in the scan card with calls to
DownloadObj, etc., there must be sufficient space to store all the objects
to be downloaded.

Calling GetObjMemSize can discover the memory space required by an
object.

Returns S_OK if the function succeeds.

See Also GetObjMemSize, DownloadObj, DownloadAllObj

GetScanCardCount

Purpose Get the number of scan cards installed and detected.

Implementation HRESULT GetScanCardCount (int CardCount)

Returns CardCount The number of installed and detected scan cards.

Comments Use this command to determine how many scan cards are installed in
the computer. An application should call this function when first initializ-
ing the COM Server, and exit if no cards are detected.

Returns S_OK if the function succeeds.

Chapter 7 Marker Library Functions

66 weldMARK™ COM Automation Server MN047 / v3.0.3

GetScanCardInput

Purpose Read a specific port on the SP-ICE, SP-ICE-2 or RLC card.

Implementation HRESULT GetScanCardInput (int CardNum, int* Offset, int* Word)

Parameters CardNum Index of scan head card

Valid range: [0 to (number of cards-1)]

Offset Address of the specific port address to read. See the
SP-ICE card manual for more details.

Valid range: [see SP-ICE card manual]

Returns Word The 16 bit data read in from the specified port is placed
in Word. Only the lower 16-bits are valid, and the upper
16 bits should be ignored.

Comments This command is valid only for the SP-ICE scan head cards.

Returns S_OK if the function succeeds.

See Also SetScanCardOutput

GetScanHeadCount

Purpose Get the number of scan heads connected to a scan card.

Implementation HRESULT GetScanHeadCount (int CardNum, int* Count)

Parameters CardNum Index of scan head card

Valid range: [0 to (number of cards-1)]

Returns Count The number of scan heads detected.

Comments The scan head must be connected to the scan card and have power
applied to it for the scan card to detect it.

Returns S_OK if the function succeeds.

See Also GetScanCardCount

GetStartProcessBit

Purpose Returns state of the StartProcess port on the Standard I/O card.

Implementation HRESULT GetStartProcessBit (int* Bit)

Returns Bit The state of the StartProcessPort.

Comments The Standard I/O card uses reverse logic, so a Bit value of 1 (one) indi-
cates the port is at ground (true).

Returns S_OK if the function succeeds.

See Also SetIOSource

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 67

GetTextAttributes

Purpose Get the attributes of a text object.

Implementation HRESULT GetTextAttributes (int ObjIndex, BSTR* FontName,
int* FontType, int* Orientation, int* Kerning, int* Leading, int* Styles,
int* ParagraphStyle, int* PulseCount)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns FontName The font name (e.g. Arial or Times New Roman).

FontType Font type flag.

0 = TrueType
1 = LaserFont

Orientation An integer value representing the physical orienta-
tion of singleline text objects.

Orientation can contain one of the following values:

1 = Horizontal
2 = Vertical
3 = Radial

Kerning The added spacing between each character.

Units: % (percent) of character width.

Leading The added spacing between each line in paragraph
text.

Units: % (percent) of character height.

Styles The font style (only for TT-Fonts).

Styles can contain a combination of the following
values:

0 = Normal text
1 = Bold
2 = Italics

ParagraphStyle The paragraph justification for multiline text objects.

ParagraphStyle can be one of the following values:

0 = LeftJustify
1 = RightJustify
2 = CenterJustify

PulseCount The number of laser pulses fired at each dot using
the current laser frequency and pulse width set-
tings.

Comments Only for TT fonts.

Returns S_OK if the function succeeds.

See Also SetTextAttributes

Chapter 7 Marker Library Functions

68 weldMARK™ COM Automation Server MN047 / v3.0.3

GetUserInWord

Purpose Get the status of the USERIN ports on the Standard I/O card.

Implementation HRESULT GetUserInWord (int* WordValue)

Returns WordValue: Value of the word represented by the USERIN ports.

Comments On the Standard I/O card, there are six bits that make up the USERIN
ports. WordValue is a bitwise description of all six ports.

For example, a WordValue of 0 indicates all the ports are set to false.
AWordValue of 3 indicates that port 1 and port 2 are true, and the rest
are false. A WordValue of 63 indicates all ports are set to true.

The Standard I/O card uses reverse logic, so a true indicates the port is
at ground. There must be a Standard I/O card installed for this function to
succeed.
Returns S_OK if the function succeeds.

See Also GeScanCardInput

GetVectorGraphicAttributes

Purpose Get the attributes of a vector graphic object.

Implementation HRESULT GetVectorGraphicAttributes (int ObjIndex, int* PulseCount)

Parameters ObjIndex ObjIndex: Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns PulseCount The number of laser pulses fired at each dot using the
current laser frequency and pulse width settings.

Comments Not all vector graphic file formats support a dot entity. If the vector graph-
ic file contains dot entities, the PulseCount parameter returns the value
all dot entities have within the vector graphic.

Returns S_OK if the function succeeds.

See Also SetVectorGraphicAttributes

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 69

GoToXY

Purpose Commands the mirrors to an X,Y coordinate.

Implementation HRESULT GoToXY (int CardNum, int X, int Y, double Jumpspeed)

Parameters CardNum Index of scan head card

Valid range: [0 to (number of cards-1)]

X The x-coordinate location to move the mirrors to.

Valid range: [-32768 to 32767] bits

Y The y-coordinate location to move the mirrors to.

Valid range: [-32768 to 32767] bits

Jumpspeed The speed at which the mirrors will jump to the X,Y
coordinate.

Comments You must call GetBusyStatus to determine if the COM Server is ready to
execute this command before calling GoToXY. If the system is currently
busy, the function will fail.

The marking field is described using a Cartesian coordinate system, with
(0,0) at the center of the field, (-32768, -32768) at the bottom left corner,
and (32767, 32767) at the top right corner.

Returns S_OK if the function succeeds.

See Also GetBusyStatus

HomeAxes

Purpose Homes the specified axes which HomeAxis flag is set to 1.

Implementation HRESULT HomeAxes(int HomeAxis1, int HomeAxis2, int HomeAxis3, int
HomeAxis4)

Parameters HomeAxis1…4 Corresponds to OMS motor controller axis and rep-
resents a request to home it.

0 = home not required
1 = home required

Returns Returns S_OK if the function succeeds.

See Also HomeLTAxis

HomeLTAxis

Purpose Homes the axis which controls the LT for specified scan head.

Implementation HRESULT HomeLTAxis(int ACard, int AHead)

Parameters CardNum Index of scan head card

Valid range: [0 to (number of cards -1)] bits

HeadNum Index of scan head

Valid range: [0 to (number of cards -1)] bits

Returns Returns S_OK if the function succeeds.

See Also HomeAxes

Chapter 7 Marker Library Functions

70 weldMARK™ COM Automation Server MN047 / v3.0.3

IsIOCardInstalled

Purpose Detects the PCI-DIO24H Standard I/O card.

Implementation HRESULT IsIOCardInstalled (int Flag)

Returns Flag Flag indicating the presence of the I/O card.

0 = not installed
1 = installed

Comments A proper connector with the CardID connected to ground and attached to
the I/O card is required for the software to detect the I/O card.

Refer to the weldMARK™ Reference Manual for details on installing and
configuring the Standard I/O Card.

Returns S_OK if the function succeeds.

IsObjOutOfBounds

Purpose Queries an object to determine if the whole object is within the markable
boundaries of the marking field.

Implementation HRESULT IsObjOutOfBounds (int ObjIndex, int* OutOfBoundsFlag)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns OutOfBoundsFlag The OutOfBoundsFlag.

0 = in bounds
1 = out of bounds.

Comments If OutOfBoundsFlag is 1 (one), the object, or part of the object is outside
the marking field, and will not mark.

The marking field is described using a Cartesian coordinate system, with
(0,0) at the center of the field, (-32768, -32768) at the bottom left corner,
and (32767, 32767) at the top right corner.

Returns S_OK if the function succeeds.

LoadJobFromFile

Purpose Loads a compatible job file.

Implementation HRESULT LoadJobFromFile (BSTR FileName, int* JobIndex)

Parameters FileName Full pathname to a valid job file.

Valid types: [*.wmj]

Returns JobIndex The index of the newly loaded job.

Comments If FileName is not found, has the wrong extension, or is corrupted, func-
tion will return an error.

Returns S_OK if the function succeeds.

See Also SaveJobToFile

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 71

LoadLaserConfigFile

Purpose Loads a compatible laser config file.

Implementation HRESULT LoadLaserConfigFile (int CardNum, BSTR ConfigFile)

Parameters CardNum Index of scan head card

Valid range: [0 to (number of cards-1)]

ConfigFile Fully qualified path to a valid laser config file.

Valid types: [*.cfg]

Comments Laser config files are used to set up the scan card hardware for proper
control of the laser output signals.

If weldMARK™ 3 has been run on the target computer, and a laser type
selected, you do not need to call this function.

However, this function is available if you want to change laser types from
the COM Server interface.

Returns S_OK if the function succeeds.

See Also GetLaserConfigFile

LoadLensCalFile

Purpose Loads and binds a compatible lens correction file to a specific scan head.

Implementation HRESULT LoadLensCalFile (int CardNum, int HeadNum, BSTR CalFile)

Parameters CardNum Index of scan head card.

Valid range: [0 to (number of cards-1)]

HeadNum Index of scan head.

Valid range: [0 to (number of heads-1)]

CalFile Full pathname of the lens correction file.

Valid type: [*.gcd]

Comments Lens correction files are used to correct for geometric distortions intro-
duced by the XY scan head.

If weldMARK™ 3 has been run on the computer, and a lens type select-
ed, you do not need to call this function.

However, this function is available if you want to change lens correction
files from the COM Server interface.

If a folder other than the standard lens correction file install folder is
used, ensure the lens correction file is already present before restarting
weldMARK™.

Returns S_OK if the function succeeds.

See Also GetLensCalFile

Chapter 7 Marker Library Functions

72 weldMARK™ COM Automation Server MN047 / v3.0.3

MarkAllObj

Purpose Marks all objects in the Active Job.

Implementation HRESULT MarkAllObj (int Orientation)

Parameters Orientation Rotates the marked image relative to screen.

Valid values: [0, 90,180, 270]

Comments Each object will be marked using that objects settings for MarkMode and
NumPasses. Use SetObjMarkMode and SetObjNumPasses to change
these settings.

You must call GetBusyStatus to determine if the COM Server is ready to
mark before calling MarkAllObj. If the system is currently executing an
object, the function will fail.

All objects will be marked using the ProfileIndex of 0 (zero), unless the
object supports pens, and the pens have been enabled. If pens are ena-
bled, the Profile used will depend on the pens contained in the object.

This function will not return until all objects have been marked. If you
want control returned to your application immediately, use MarkObj in-
stead.

Returns S_OK if the function succeeds.

See Also TerminateMark, GetBusyStatus, MarkObj, MarkObjEx, SetObjProfile,
GetObjProfile, SetObjMarkMode, SetObjNumPasses,
SetObjUsePensFlag

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 73

MarkObj

Purpose Marks an object in the Active Job.

Implementation HRESULT MarkObj (int ObjIndex, int Orientation)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Orientation Rotates the marked image relative to screen.

Valid values: [0, 90, 180, 270]

Comments The object will be marked using the current object settings for MarkMode
and NumPasses.

Use SetObjMarkMode and SetObjNumPasses to change these settings.
You must call GetBusyStatus to determine if the COM Server is ready to
mark before calling MarkObjEx. If the system is currently executing an
object, the function will fail.

The object will be marked using the ProfileIndex of 0 (zero), unless the
object supports pens, and the pens have been enabled.
If pens are enabled, the Profile used will depend on the pens contained
in the object.The active mark can be terminated at any time by calling
TerminateMark. This function will return immediately.

Returns S_OK if the function succeeds.

See Also TerminateMark, GetBusyStatus, MarkObjEx, MarkAllObj, SetObjProfile,
GetObjProfile, SetObjMarkMode, SetObjNumPasses,
SetObjUsePensFlag

Chapter 7 Marker Library Functions

74 weldMARK™ COM Automation Server MN047 / v3.0.3

MarkObjEx

Purpose Marks an object in the Active Job.

Implementation HRESULT MarkObjEx (int ObjIndex, int ProfileIndex, int Orientation)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

ProfileIndex Index of Profile to use when marking.

Valid range: [0 to 7]

Orientation Rotates the marked image relative to screen.

Valid values: [0, 90, 180, 270]

Comments The objects NumPasses and MarkMode settings are ignored when using
this function, and the object will only mark once for each call to the func-
tion. You must call GetBusyStatus to determine if the COM Server is
ready to mark before calling MarkObj. If the system is currently executing
an object, the function will fail.

The object will be marked using ProfileIndex, even if the object contains
pens and the pens have been enabled. The active mark can be termi-
nated at any time by calling TerminateMark. This function will return im-
mediately.

Returns S_OK if the function succeeds.

See Also TerminateMark, GetBusyStatus, MarkObj, MarkAllObj, SetObjProfile,
GetObjProfile

MoveObjInList

Purpose Moves an object to another position within the ObjectList.

Implementation HRESULT MoveObjInList (int CurrIndex, int NewIndex)

Parameters CurrIndex Current index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

NewIndex New index of object in the ObjectList.

Valid range: [0 to (number of objects-1)]

Comments The object order in the ObjectList determines the order in which the ob-
jects will mark when calling MarkAllObj or DownloadAllObj.

Returns S_OK if the function succeeds.

See Also MarkAllObj, DownloadAllObj

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 75

NewBarcode

Purpose Add a new barcode object to the current ObjectList in the Active Job.

Implementation HRESULT NewBarcode (int* NewObjIndex, BSTR ObjName,
int CodeType, BSTR CharString)

Parameters ObjName A name for the object.

Valid length: [1 to 256 characters]

CodeType An integer indicating the type of barcode to add.

Valid values:

0 = Code 39, Extended Code 39
1 = CodaBar
2 = Code 93
3 = Code 128 EAN/UCC 128
4 = Interleaved 2 of 5 (ITF)
5 = POSTNET (Zip+4, Zip+6)
6 = UPCA, UPCE
7 = EAN 8 EAN 13, BookLan
8 = DataMatrix (ECC200)
9 = Denso QR code
10= PDF417

CharString Valid string to represent with the barcode. [de-

pends on barcode specification]

Valid length: [depends on barcode specification]

Returns NewObjIndex The index of the new object in the ObjectList.

Comments When the object is created, the DefaultProfile is applied to all Profiles in
the object.

Depending on the barcode type, different rules apply in specifying a valid
value for CharString.
Consult the specific barcode specifications for rules regarding string va-
lidity.

Returns S_OK if the function succeeds.

NewBitmap

Purpose Add a new bitmap object to the current ObjectList in the Active Job.

Implementation HRESULT NewBitmap (int* NewObjIndex, BSTR ObjName,
BSTR FileName)

Parameters ObjName A name for the object.

Valid length: [1 to 256 characters]

FileName A fully qualified path to a bitmap file.

Valid types: [*.bmp, *.jpg, *.gif, *.pcx]

Returns NewObjIndex The index of the new object in the ObjectList.

Comments When the object is created, the DefaultProfile is applied to all Profiles in
the object.

Returns S_OK if the function succeeds.

See Also SetBitmapAttributes

Chapter 7 Marker Library Functions

76 weldMARK™ COM Automation Server MN047 / v3.0.3

NewDrill

Purpose Add a new drill object to the current ObjectList in the Active Job.

Implementation HRESULT NewDrill (int* NewObjIndex, BSTR ObjName, int NumRows,
int NumColumns, int NumPoints, int Duration)

Parameters ObjName A name for the object.

Valid length: [1 to 256 characters]

NumRows Numbers of rows in the point array.

Valid range: [1 to 100]

NumColumns Numbers of columns in the point array.

Valid range: [1 to 100]

NumPoints Total number of points in the point array.

Valid range: [1 to 10000]

Duration The length of time the laser is turned on at each
point.

Valid range: [10 to 120,000,000] µSec

Returns NewObjIndex The index of the new object in the ObjectList.

Comments When the object is created, the DefaultProfile is applied to all Profiles in
the object.

Returns S_OK if the function succeeds.

NewJob

Purpose Add a new job to the JobList.

Implementation HRESULT NewJob (int* NewJobIndex, BSTR FileName)

Parameters FileName A fully qualified filename for the new job.

Valid length: [1 to 511 characters]

Returns NewJobIndex The index of the new job in the JobList.

Comments The new job is created empty (containing no objects).
FileName is the filename used in calls to SaveJobToFile. It must have a
.wmj extension.

Returns S_OK if the function succeeds.

NewLine

Purpose Add a new line object to the current ObjectList in the Active Job.

Implementation HRESULT NewLine (int* NewObjIndex, BSTR ObjName)

Parameters ObjName A name for the object.

Valid length: [1 to 256 characters]

Returns NewObjIndex The index of the new object in the ObjectList.

Comments When the object is created, the DefaultProfile is applied to all Profiles in
the object.

Returns S_OK if the function succeeds.

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 77

NewPolygon

Purpose Add a new polygon object to the current ObjectList in the Active Job.

Implementation HRESULT NewPolygon (int* NewObjIndex, BSTR ObjName,
int NumSides, int StartAngle, int EndAngle)

Parameters ObjName A name for the object.

Valid length: [1 to 256 characters]

NumSides The number of straight line segments in the poly-
gon.

Valid range: [3 to 10000]

StartAngle The start direction when drawing the polygon.

Valid range: [0 to 360]

EndAngle The end direction when drawing the polygon.

Valid range: [0 to 360]

Returns NewObjIndex The index of the new object in the ObjectList.

Comments When the object is created, the DefaultProfile is applied to all Profiles in
the object.

Returns S_OK if the function succeeds.

NewRect

Purpose Add a new rectangle object to the current ObjectList in the Active Job.

Implementation HRESULT NewRect (int* NewObjIndex, BSTR ObjName)

Parameters ObjName A name for the object.

Valid length: [1 to 256 characters]

Returns NewObjIndex The index of the new object in the ObjectList.

Comments When the object is created, the DefaultProfile is applied to all Profiles in
the object.

Returns S_OK if the function succeeds.

Chapter 7 Marker Library Functions

78 weldMARK™ COM Automation Server MN047 / v3.0.3

NewText

Purpose Add a new text object to the current ObjectList in the Active Job.

Implementation HRESULT NewText (int* NewObjIndex, BSTR ObjName,
BSTR FontName, BSTR CharString, int Paragraph)

Parameters ObjName A name for the object.

Valid length: [1 to 256 characters]

FontName The text objects font.

Valid length: [1 to 256 characters]

CharString The string the text object represents.

Valid length: [1 to 511 characters]

Paragraph A flag to indicate paragraph text.

Valid values:

0 = singleline object
1 = multiline object

Returns NewObjIndex The index of the new object in the ObjectList.

Comments When the object is created, the DefaultProfile is applied to all Profiles in
the object.

FontName must be a LaserFont installed on the machine, or a TrueType
font installed in Windows or the Arial font is substituted.

A value of 0 in Paragraph instructs the input parser to ignore embedded
carriage return/line feed pairs.

Returns S_OK if the function succeeds.

NewVectorGraphic

Purpose Add a new vector graphic object to the current ObjectList in the Active
Job.

Implementation HRESULT NewVectorGraphic (int* NewObjIndex, BSTR ObjName,
BSTR FileName)

Parameters ObjName A name for the object.

Valid length: [1 to 256 characters]

FileName A fully qualified filename pointing to the vector graphics
file to import.

Valid types: [*.wlo, *.plt, *.emf
1)

, *.wmf
1)

, *.dxf, *.ex2]

Returns NewObjIndex The index of the new object in the ObjectList.

Comments When the object is created, the DefaultProfile is applied to all Profiles in
the object.

Returns S_OK if the function succeeds.

1) This file formats can contain not only vector graphics but also bitmap images. If the bitmap images
should be imported, in the registry the following flag must be set:
HKLM\Software\RAYLASE\weldMARK\ObjDefaults\vectorGraphic\ImportExtractedBitmap
If the flag is not present, 0 (false) is assumed.

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 79

OffsetObj

Purpose Move an object within the marking field.

Implementation HRESULT OffsetObj (int ObjIndex, int XOffset, int YOffset)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

XOffset The amount to move the object along the x-axis.

Valid range: unlimited integer value. Keep within

[-31768 to 32767]

YOffset The amount to move the object along the y-axis.

Valid range: unlimited integer value. Keep within

[-31768 to 32767]

Comments The marking field is described using a Cartesian coordinate system, with
(0,0) at the center of the field, (-32768, -32768) at the bottom left corner,
and (32767, 32767) at the top right corner.

Returns S_OK if the function succeeds.

ReleaseMarker

Purpose Detaches from and closes the marker libraries.

Implementation HRESULT ReleaseMarker (void)

Comments weldMARK™ and the COM Server cannot access the scan card hard-
ware at the same time.

If you have loaded the COM Server and want to access the scan card
from weldMARK™, call ReleaseMarker.

When you want to gain access to the scan card with the COM Server
again, call AttachToMarker.

Returns S_OK if the function succeeds.

See Also AttachToMarker

Chapter 7 Marker Library Functions

80 weldMARK™ COM Automation Server MN047 / v3.0.3

RotateObj

Purpose Rotates an object about its center.

Implementation HRESULT RotateObj (int ObjIndex, float Angle)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Angle The relative amount to rotate the object.

Valid range: [-360.00 to 360.000] degrees

Comments Positive values of Angle rotate the object clockwise.

Returns S_OK if the function succeeds.

See Also RotateObjEx

RotateObjEx

Purpose Rotates an object about a coordinate center.

Implementation HRESULT RotateObjEx (int ObjIndex, float Angle, int XCenter,
int YCenter)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Angle The relative amount to rotate the object.

Valid range:
[-360.00 to 360.000] degrees

XCenter The center of rotation in the x-axis.

Valid range:
[-2,147,483,648 to 2,147,483,647]

YCenter The center of rotation in the y-axis.

Valid range:
[-2,147,483,648 to 2,147,483,647]

Comments Positive values of Angle rotate the object clockwise.

Returns S_OK if the function succeeds.

See Also RotateObj

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 81

SaveJobToFile

Purpose Saves the Active Job to a file.

Implementation HRESULT SaveJobToFile (BSTR FileName, BSTR AppVersion,
BSTR TodaysDate, BSTR AppName, BSTR CompanyName)

Parameters FileName Fully qualified path to the file to save.

Valid length: [1 to 256 characters]

AppVersion A string for the version number.

Valid length: [1 to 256 characters]

TodaysDate A string with the date.

Valid length: [1 to 256 characters]

AppName A string for the name of your Application.

Valid length: [1 to 256 characters]

CompanyName A string for your company name.

Valid length: [1 to 256 characters]

Comments Any changes made to objects or the job after it was loaded will be saved.
FileName must be a fully qualified path to the job file.

Use AppVersion to save the client applications version number to the file.
Use TodaysDate to save a string of the current date (in any format) to
the file.
Use AppName to save the client applications name to the file.
Use CompanyName to save the client applications company name to the
file.

Returns S_OK if the function succeeds.

See Also LoadJobFromFile

Chapter 7 Marker Library Functions

82 weldMARK™ COM Automation Server MN047 / v3.0.3

ScaleObj

Purpose Scales an object from its center.

Implementation HRESULT ScaleObj (int ObjIndex, float XScale, float YScale, int XMirror,
int YMirror)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

XScale Amount to scale the x-axis.

Valid range: [>0]

YScale Amount to scale the y-axis.

Valid range: [>0]

XMirror Setting to 1 (one) will cause the object to mirror
itself in x-axis.

Valid values: [0, 1]

YMirror Setting to 1 (one) will cause the object to mirror
itself in y-axis.

Valid values: [0, 1]

Comments Returns S_OK if the function succeeds.

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 83

ScanCardCommand

Purpose Add a list command to the scan card list buffer.

Implementation HRESULT ScanCardCommand (int CardNum, int OpCode, int AParam,
int BParam, BSTR Buffer)

Parameters CardNum Index of scan head card.

 Valid range: [0 to (number of cards-1)]

OpCode An operation code used to indicate which list command
to send to the scan card. Can be one of the following
values:

Function OpCode Aparam BParam Buffer Typ

Jump_abs 0 Xcoordinate Ycoordinate NULL LC

Laser_on 1 Duration 0 NULL LC

Long_delay 2 Duration 0 NULL LC

Mark_abs 3 Xcoordinate Ycoordinate NULL LC

Pola_abs 4 Xcoordinate Ycoordinate NULL LC

Polb_abs 5 Xcoordinate Ycoordinate NULL LC

Polc_abs 6 Xcoordinate Ycoordinate NULL LC

Set_Mark_Parameters_List 10 StepPeriod StepSize NULL LC

Write_Da_List 11 PortNumber Value NULL LC

Write_Port_List 12 PortNumber Value NULL LC

Output_To_File 101 0 0 FileName CC

Copy_File_To_Target_Disk 102 0 0 FileName CC

Output_To_File 103 0 0 NULL CC

Set_Start_List_1 104 0 0 NULL CC

Set_Start_List_2 105 0 0 NULL CC

Wait_For_External_Start 106 0 0 NULL LC

Loop_To_Start_List 107 ListNum
1)

 0 NULL LC

Set_End_Of_List 108 0 0 NULL LC

Execute_List_1 109 0 0 NULL CC

Execute_List_2 110 0 0 NULL CC

Set_Active_Card 112 CardNum+1 0 NULL CC

LoadCorrFileFromTargetDsk 114 0 0 FileName CC

Set_Mode 116 Mode 0 NULL CC

Delete_File_On_Target_Disk 117 0 0 NULL CC

Wait_For_Counter_Value_Ex 118 Value 0 NULL LC

Reset_Jump_List 119 Xcoordinate Ycoordinate NULL LC

Mark_Immediately 120 0 0 NULL LC

Modify_Gain 121 XGain YGain NULL CC

Modify_Offset 122 XOffset YOffset NULL CC

Clear_Scan_Complete 123 0 0 NULL CC

AParam The first parameter associated with OpCode. See above.
Check the scan card documentation for valid value ranges.

BParam The second parameter associated with OpCode. See above.
Check the scan card documentation for valid value ranges.

Chapter 7 Marker Library Functions

84 weldMARK™ COM Automation Server MN047 / v3.0.3

 Buffer The character string parameter associated with OpCode. See
above. Check the scan card documentation for valid value
ranges.

Comments Use this command to gain direct control over the list commands sent to the
scan card. Normally, scan card list commands are interspersed with Object
vector list commands, using ScanCardCommand and DownloadObj or
DownloadAllObj to create a customized job loaded into the scan card hard-
ware.

After the list has been set up, ScanCardExecute is called. Refer to the scan
card documentation for a complete description of each command.

Returns S_OK if the function succeeds.

Modify_Gain and Modify_Offset commands affect only the first active con-
troller card and not any connected slave controller cards.

XGain and YGain parameters in the Modify_Gain command are set as inte-
ger values in [1/1000 of a %] units. The current gain values are modified by
the specified percentage. Example: A gain change of +1% is set with a value
of 1000 and a gain change of -1% is set with a value of -1000.

XOffset and YOffset parameters in the Modify_Offset command are positive
or negative integers in bits, that are added to the original scan head offsets.

Please see the OffsetObj command for valid ranges.

See Also DownloadObj, DownloadAllObj, ScanCardExecute

1) ListNum: Valid values: [1 or 2]

LC = List Command, CC = Control Command

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 85

ScanCardExecute

Purpose Execute the indicated list buffer in the scan card.

Implementation HRESULT ScanCardExecute (int CardNum, int ListNum)

Parameters CardNum Index of scan head card.

Valid range: [0 to (number of cards-1)]

ListNum The list buffer to execute.

Valid values: [1 or 2]

Comments Use this command to execute a previously built set of list commands.
Normally, ScanCardCommand is called, interspersed with Object vector
lists, using DownloadObj or DownloadAllObj to create a customized job
loaded into the scan card hardware. After the list has been set up,
ScanCardExecute is called. There are two lists available in the scan card
buffer.

Returns S_OK if the function succeeds.

See Also DownloadObj, DownloadAllObj, ScanCardCommand

SetActiveJob

Purpose Set a job within the JobList to the Active Job.

Implementation HRESULT SetActiveJob (int JobIndex)

Parameters JobIndex Index of job to make the Active Job.

Valid range: [0 to (number of jobs-1)]

Comments Use GetJobCount to discover the total number of jobs currently loaded in
memory. All functions that reference and use Objects work with the Ac-
tive Job.

Returns S_OK if the function succeeds.

See Also GetJobCount

Chapter 7 Marker Library Functions

86 weldMARK™ COM Automation Server MN047 / v3.0.3

SetBarcodeAttributes
SetBarcodeAttributesEx

Purpose Set the attributes of a barcode object.

Implementation HRESULT SetBarcodeAttributes (int ObjIndex, int WidthReduce,
int NarrowToWide, int QuietZone, int Preferences, int DotMatrix,
int Pixels, int PulseCount)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

WidthReduce The amount of reduction in the width of all bars.
Valid for 1D codes only.

Valid range: [-99 to 99] % of bar width

NarrowToWide The change in width ratio of the narrow and wide
bars from default. Valid for 1D codes only. For
PDF417, represents the aspect ratio of the height
and width of the entire barcode.

Valid range: [-20 to 30] % of bar width

QuietZone When inverting a barcode, the amount of quiet
space to surround the code. Set to 0 to disable in-
verting.

Valid range: 1D = [0 to 50] % of code width. Data-
Matrix, QR code, PDF417 = [0 to 50] # of cells

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 87

Preferences: Use to set options depending on the symbology type.

To use one or more of the Preferences options, per-
form a logical OR using the desired preferences con-
stants and pass the result in the Preferences parame-
ter.

Constant Symbology Function

1 QR code Use Model1

2 QR code Use Model2

4 QR code Use MicroQR

8 QR code Use Error correction level L (7%)

16 QR code Use Error correction level M (15%)

32 QR code Use Error correction level Q (25%)

64 QR code Use Error correction level H (30%)

2 PDF417 Use Security Level 0

4 PDF417 Use Security Level 1

8 PDF417 Use Security Level 2

32 PDF417 Use TruncatedPDF

64 PDF417 Use Security Level 3

128 PDF417 Use Security Level 4

256 PDF417 Use Security Level 5

512 PDF417 Use Security Level 6

1024 PDF417 Use Security Level 7

2048 PDF417 Use Security Level 8

4096 PDF417 Use Security Level 9 (Automatic)

8192 PDF417 Use Compaction Mode 0

16384 PDF417 Use Compaction Mode 1

32768 PDF417 Use Compaction Mode 2

65536 PDF417 Use Compaction Mode 3

131072 PDF417 Use Compaction Mode 4

16 DataMatrix Use Standard ASCII

131072 DataMatrix Use 8 X 18 Format

262144 DataMatrix Use 8 X 32 Format

393216 DataMatrix Use 12 X 26 Format

524288 DataMatrix Use 12 X 36 Format

655360 DataMatrix Use 16 X 36Format

786432 DataMatrix Use 16 X 48 Format

1048576 Mark cells individually

2097152 2d Matrix Request to automatically
enlarge code if necessary

16777216 DataMatrix Code Generate fixed 10 x 10

33554432 DataMatrix Code Generate fixed 12 x 12

50331648 DataMatrix Code Generate fixed 14 x 14

67108864 DataMatrix Code Generate fixed 16 x 16

83886080 DataMatrix Code Generate fixed 18 x 18

100663296 DataMatrix Code Generate fixed 20 x 20

117440512 DataMatrix Code Generate fixed 22 x 22

134217728 DataMatrix Code Generate fixed 24 x 24

150994944 DataMatrix Code Generate fixed 26 x 26

167772160 DataMatrix Code Generate fixed 32 x 32

Chapter 7 Marker Library Functions

88 weldMARK™ COM Automation Server MN047 / v3.0.3

184549376 DataMatrix Code Generate fixed 36 x 36

201326592 DataMatrix Code Generate fixed 40 x 40

218103808 DataMatrix Code Generate fixed 44 x 44

234881024 DataMatrix Code Generate fixed 48 x 48

251658240 DataMatrix Code Generate fixed 52 x 52

268435456 DataMatrix Code Generate fixed 64 x 64

285212672 DataMatrix Code Generate fixed 72 x 72

301989888 DataMatrix Code Generate fixed 80 x 80

318767104 DataMatrix Code Generate fixed 88 x 88

335544320 DataMatrix Code Generate fixed 96 x 96

352321536 DataMatrix Code Generate fixed 104 x 104

369098752 DataMatrix Code Generate fixed 120 x 120

385875968 DataMatrix Code Generate fixed 132 x 132

402653184 DataMatrix Code Generate fixed 144 x 144

32 Code 39 Use Full ASCII

64 Code 39 Use HIBC

64 Code 128 Use EAN/UCC128

64 EAN/BookLan Use BookLan

128 Code 39 Use Check digit Modulo 43

 Interleaved 2 of 5 Use Check digit Modulo 10

 CodaBar Use Check digit Modulo 16

 EAN/UCC 128 Use Check digit Modulo 10

DotMatrix The dot matrix flag.

Set to 1 (one) to enable dot matrix mode, set to 2 (two)
to enable circle dot mode.

If parameter is set to 1 or 2, please be sure that filling
is disactivated (SetObjMarkFillFlag = 0).

Valid values: [1 or 2]

Pixels For dot matrix mode, depends on barcode type:

1D codes:

The spacing between adjacent pixels.

Valid range: [1 to 32767] bits.

2D codes:

The number of rows and columns in the pixel array in
each cell.
Valid range: [1 to 100]

PulseCount The number of laser pulses fired at each dot using the
current laser frequency and pulse width settings.

Valid range: [1 to 10000]

Comments Returns S_OK if the function succeeds.

See Also GetBarcodeAttributes, GetBarcodeAttributesEx

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 89

SetBitmapAttributes

Purpose Sets the attributes of a bitmap object.
1)

Implementation HRESULT SetBitmapAttributes (int ObjIndex, BSTR FileName,
int PixelSep, int Contrast, int Brightness, int InvertPixels, int SkipBlack,
int BlackCorners, int ErrorDiffusion)

Parameters ObjIndex Index of object in the ObjectList.

Valid range: [0 to (number of objects-1)]

FileName Fully qualified filename to use as objects graphics
source.

Valid types: [*.bmp, *.jpg, *.pcx, *.gif]

PixelSep Distance between adjacent pixels.

Valid range: [1 to 10000] bits

Contrast A relative value affecting the range between the
darkest and lightest pixels.

Valid range: [-100 to 500]

Brightness A relative value affecting the overall brightness of all
pixels.

Valid range: [-100 to 500]

InvertPixels Flag indicating whether the pixels are inverted (black
to white).

0 = not inverted, 1 = inverted

Valid values: [0, 1]

SkipBlack Flag indicating whether black pixels are jumped over
when marking the bitmap.

0 = Do not skip, 1 = Skip black pixels

Valid values: [0, 1]

BlackCorners Flag indicating what color to make pixels in the cor-
ners if the pixel has been rotated to an angle other
that 90, 180 or 270.

0 = white, 1 = black

Valid values: [0, 1]

ErrorDiffusion Flag indicating whether the Error Diffusion algorithm
has been applied to the bitmap.

0 = no error diffusion, 1 = error diffusion applied.

Valid values: [0, 1]

Comments Returns S_OK if function succeeds.

See Also GetBitmapAttributes

1) Since weldMARK™ v2.0.0.98a there is a registry entry to set the raster mode to single or
bidirectional.
HKCU\Software\RAYLASE\weldMARK\objDefaults\Bitmap raster REG_DWORD
0 -> bidirectional; 1 -> single raster mode
Since the value is read every time before a command is executed, it is possible to set or change the
the raster mode befor calling NewBitmap command.

Chapter 7 Marker Library Functions

90 weldMARK™ COM Automation Server MN047 / v3.0.3

SetBitmapGrayScaleMode

Purpose Sets the mode defining the way in which the laser power is controlled
when marking a grayscale bitmap. The result achieves with different
modes depend on the type of laser. There are three selectable modes
(see below).

Implementation HRESULT SetBitmapGrayScaleMode (int ObjIndex, int Mode)

Parameters ObjIndex Index of object in the ObjectList.

Valid range: [0 to (number of objects-1)]

Mode Value of the bitmap algorithm to be used for the-
object..

Comments The selectable modes are:

ID Mode (Bitmap Algorihm) Usable for Laser types

0 POINT_AND_SHOOT_ALG All (usually CO2):
Grayscale value of pixels set by
laser-on time.

4 ANALOG_POWER_ALG Nd:YAG:
Grayscale value of pixel set by
analog laser power interface.

5 DIGITAL_POWERSET_ALG Nd:YAG:
Grayscale value of pixel set by
digital laser power interface.

9 PWM_ALG For CO2 and lasers that can be
modulated on higher frequencies

Do not use any Mode IDs other than 0, 4, 5 or 9.

The ErrorDiffusion mode can be set using the function SetBitmapAttrib-
utes.

Returns S_OK if function succeeds.

See Also GetBitmapGrayScaleMode, GetBitmapAttributes, SetBitmapAttributes

SetBmpEndOfLineDelay

Purpose Insert a delay at the end of each pixel line after jumping to the next lines
start position.

This is one possibility to improve marking quality.

Implementation HRESULT SetBmpEndOfLineDelay (int ObjIndex, int Delay)

Parameters ObjIndex Index of object in the ObjectList.

Valid range: [0 to (number of objects-1)]

Delay Valid range: [0 to 20000] µSec

Comments Returns S_OK if function succeeds.

See Also GetBmpEndOfLineDelay

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 91

SetBmpLineShiftCorrection

Purpose Bitmap graphics are marked line by line. In bi-directional mode the
marking speed can be increased considerably. Due to mechanical iner-
tia and laser specific delay, line offset can occur which can be correct-
ed via parameter Set_BmpLineShiftCorrection.

Example:

…………………….
 …………………….
…………………….
 …………………….
…………………….

Marked bi-directionally
without Line Shift Correction

…………………….
…………………….
…………………….
…………………….
…………………….

Marked bi-directionally with
Line Shift Correction

 …………………….
…………………….
 …………………….
…………………….
 …………………….

Too much
Line Shift Correction

Implementation HRESULT SetBmpLineShiftCorrection (int ObjIndex, int* Correction)

Parameters ObjIndex Index of object in the ObjectList.

Valid range: [0 to (number of objects-1)]

Correction Valid range: [0 to 65500] bits

Comments Returns S_OK if function succeeds.

See Also GetBmpLineShiftCorrection

SetBmpSkippedPixelTreshold

Purpose The “Pixel Treshold” value enables to specify a threshold value that
SP_ICE card uses to encounter bitmap areas that are not marked but
skipped. This value depends on the originally imported bitmap and the
cost of quality that the user is willing to accept to enhance the marking
speed.
Above the bitmap dependent threshold, pixels with lower values are not
marked but skipped. This however is only done if at least 3 pixels in a
row are below pixel threshold value.
“Pixel Treshold” values 0 and 1 means that there will be no skipping of
unmarked areas at all, so that every single pixel is marked by the laser.

Implementation HRESULT SetBmpSkippedPixelTreshold (int ObjIndex, int MinPixel)

Parameters ObjIndex Index of object in the ObjectList.

Valid range: [0 to (number of objects-1)]

MinPixel Value ≤ 1 No skip of white pixels

Value ≥ 2 Skips processing of pixel wit grey-
scale value < the defined threshold
value

Comments Returns S_OK if function succeeds.

See Also GetBmpSkippedPixelTreshold

Chapter 7 Marker Library Functions

92 weldMARK™ COM Automation Server MN047 / v3.0.3

SetBusyReadyBit

Purpose Set the Busy/Ready port on the Standard I/O card.

Implementation HRESULT SetBusyReadyBit (int Bit)

Parameters Bit The Busy/Ready flag.

Valid values: [0 or 1]

Comments When using the COMServer, the Busy/Ready port on the Standard I/O
card does not change automatically.

The programmer must use this command to change the state of the port.
The Standard I/O card uses reverse logic, so a Bit value of 1 (one) will
set the port to ground (true).

 Returns S_OK if the function succeeds.

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 93

SetDefaultProfile

Purpose Change the Default Profile settings applied to all new objects.

Implementation HRESULT SetDefaultProfile (int ProfileIndex, int Mode, int PassCount,
double Markspeed, double Jumpspeed, int Jumpdelay, int Markdelay,
int Polygondelay, float Laserpower, int Laseroffdelay, int Laserondelay,
int TAxis, double T1, int T2, int Unused, int Varijumpdelay,
int Varijumplength, int Wobblesize, double Wobblefrequency,
int Autosegmentation, int Varipolydelay)

Parameters ProfileIndex Index of the Profile.

Valid range: [0 to 7]

Mode See SetObjMarkMode for a description of this pa-
rameter.

Valid range: [0 to 4]

PassCount See SetObjNumPasses for a description of this pa-
rameter.

Valid range: [>0]

MarkSpeed Defines the speed of the laser spot while marking.

Valid range: [0 to 30000] bits/mm

Jumpspeed Defines the speed at which the mirrors jump to the
next marking vector.

Valid range: [50 to 30000] bits/mm

Jumpdelay Defines the delay after a jump and before the next
marking vector starts.

Valid range: [0 to 65500] µSec

Markdelay Defines the delay between a marking vector and a
jump vector.

Valid range: [30 to 20000] µSec

Polygondelay Defines the delay between contiguous marking vec-
tors.

Valid range: [0 to 20000] µSec

Laserpower Defines the programmed laser power for non CO2-
type lasers

Valid range: [0 to 100] % (percent)

Laserpower for CO2- type lasers is defined as:

Duty Cycle (%) = 0.1 × T2 [µs] × T1 [kHz]

Laseroffdelay Defines the delay after the last marking vector finish-
es and the laser is turned off.

Valid range: [0-65535] µSec

Laserondelay Defines the delay after a marking vector starts and
the laser is turned on.

Valid range: [0-65535] µSec

Chapter 7 Marker Library Functions

94 weldMARK™ COM Automation Server MN047 / v3.0.3

TAxis Defines the Z position of the object. +Z is toward
the scan head and –Z away from the scan head.
Position is defined in bits and the same calibration
factor is used as for x and y.

Z field size is limited by the available Linear Trans-
lator movement. Values for Zmin and Zmax are
defined in the scan head configuration file and can
be read with GetLensCalFactorEx command.

Units: bits

Valid range: [Zmin to Zmax]

T1 Defines the frequency of the laser modulation sig-
nal.

Valid range: [0 to 250] kHz

T2 Defines the pulse width of the laser modulation
signal.

Valid range: [1 to 65535] µSec

Unused Set to 0.

Varijumpdelay Defines the delay after a jump and before the next
marking vector starts if variable jump delay is in
effect.
Set to 0 (zero) to disable variable jump delay.

Valid range: 0 = not active, [1-30000] µSec

Varijumplength Defines the length of a vector, at which any vector
that is longer will use the Varijumpdelay parameter,
and any vector that is shorter will use the Jump-
delay parameter.

Valid range: 0 = not active, [1-30000] bits

Wobblesize The diameter of the circle created when the spot is
dithered. Set to 0 (zero) to disable

Valid range: 0 = not active, [1-5000] bits

Wobblefrequency The frequency of the laser spot as it dithers around
the circle defined in Wobblesize. Active only when
wobble size > 0.

Valid range: [0-6000] Hz (cycles per second)

Unused Reserved. Set to 0.

Varipolydelay Reserved. Set to 1.

Comments The default Profile can store eight individual profiles. Objects also have
eight profiles stored. The Mode and PassCount parameters are global to
all eight individual profiles.

Returns S_OK if the function succeeds.

See Also GetObjProfile, SetDefaultProfile, GetDefaultProfile, SetObjMarkMode,
SetObjNumPasses

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 95

SetDrillAttributes

Purpose Sets the attributes of a drill object.

Implementation HRESULT SetDrillAttributes (int ObjIndex, int Rows, int Columns,
int NumPoints, int Duration)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Rows The number of rows in the point array.

Valid range: [1 to 100]

Columns The number of columns in the point array.

Valid range: [1 to 100]

NumPoints The total number of points in the point array.

Valid range: [1 to 10000]

Duration Number of pulses the laser will fire at each point.
Valid range: [1 to 10000]

Comments Returns S_OK if function succeeds.

See Also GetDrillAttributes

SetMarkInProgressBit

Purpose Set the Mark in Progress port on the Standard I/O card, and the scan
head card.

Implementation HRESULT SetMarkInProgressBit (int Bit)

Parameters Bit The Mark in Progress flag.

Valid values: [0 or 1]

Comments When using the COMServer, the Mark In Progress port does not change
automatically; the programmer must use this command to change the
state of the port. The scan card hardware must support user I/O for the
MarkInProgress signal to be available on the scan head card.

Returns S_OK if the function succeeds.

Chapter 7 Marker Library Functions

96 weldMARK™ COM Automation Server MN047 / v3.0.3

SetMOTFConfig

Purpose Sets the Mark on the Fly configuration parameters.

Implementation HRESULT SetMOTFConfig (int CardNum, int MOTFFlag,
int EncoderSimFlag, double EncoderCal, int MarkStartDelay,
double MOTFAngle)

Parameters CardNum Index of scan head card.

Valid range: [0 to (number of cards-1)]

MOTFFlag The Mark on the Fly flag.
Set to 0 (zero) to disable Mark on the Fly, or set to
1 (one) to enable.

Valid values: [0 or 1]

EncoderSimFlag The encoder simulation flag.
To simulate an encoder, set to 1 (one).

Valid values: [0 or 1]

EncoderCal The calibration factor of the encoder.

Valid range: [0 to 65000] counts/mm

MarkStartDelay The number of encoder counts to wait before
starting the mark.

Valid range: [0 to 1500] counts

MOTFAngle The angular orientation of the moving part with
respect to the x-axis.

 Valid range: [0 to 360] degrees

Comments For a part that is moving along the x-axis in the direction of increasing x,
MOTFAngle is 0. For a part that is moving along the y-axis in the direc-
tion of increasing y, MOTFAngle is 90, etc.

Returns S_OK if the function succeeds.

See Also GetMOTFConfig

SetObjCharString

Purpose Set the String value of a text or barcode object.

Implementation HRESULT SetObjCharString (int ObjIndex, BSTR CharString)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

CharString The new character string

 Valid length: [1 to 256 characters]

Comments After setting a new string, the size and position of the object may
change. Use GetObjRect to discover the objects current position and
size.

Returns S_OK if the function succeeds.

See Also GetObjCharString, GetObjRect

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 97

SetObjFill
SetObjFillEx

Purpose Sets fill parameters of an object.

Implementation HRESULT SetObjFill (int ObjIndex, int FillSpacing, int FillOffset,
int Slope1, int Slope2, int FillStyle)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

 FillSpacing The distance between adjacent fill lines.

Valid range: [1 to 32767] bits

1) FillOffset The distance between any endpoint of filling
hatchlines and the outlines of the object.

Valid range: [1 to 32767] bits

 Slope1 The angle with respect to the x-axis of the first
set of fill lines.

Valid range: [-90 to 90] degrees

 Slope2 The angle with respect to the x-axis of the sec-
ond set of fill lines (for crosshatch). Applicable
only if FillingStyle is set to 1.

Valid range: [-90 to 90] degrees

 FillStyle The fill style.

0 = parallel lines
1 = crosshatch
2 = bidirectional
3 = bidirectional and crosshatch
6 = bidirectional using meanderfill
7 = bidirectional+crosshatch using meanderfill

Valid values:: [0, 1, 2, 3, 6, 7]

Comments Only objects with closed paths can be filled.

Returns S_OK if the function succeeds.

See Also GetObjFill

1) SetObjFillEx only

Chapter 7 Marker Library Functions

98 weldMARK™ COM Automation Server MN047 / v3.0.3

SetObjGraphicFile

Purpose Sets a new graphics source file for an object.

Implementation HRESULT SetObjGraphicFile (int ObjIndex, BSTR GraphicFile)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

GraphicFile A fully qualified filename pointing to the vector graphics
file.

Valid types: [*.wlo, *.plt, *.emf, *.wmf, *.dxf, *.ex2]

Comments After setting a new source file, the size and position of the object may
change. Use GetObjRect to discover the objects current position and
size.

Returns S_OK if the function succeeds.

See Also GetObjGraphicFile, GetObjRect

SetObjMarkFillFlag

Purpose Sets the MarkFill flag of an object.

Implementation HRESULT SetObjMarkFillFlag (int ObjIndex, int MarkFillFlag)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

MarkFillFlag The fill flag.
Set to 1 (one) to enable fill marking.

Valid values: [0, 1]

Comments If the flag is set, the objects system generated fill will mark. If the object
has no fill, this function has no effect.

Returns S_OK if the function succeeds.

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 99

SetObjMarkMode

Purpose Sets the current MarkMode of an object.

Implementation HRESULT SetObjMarkMode (int ObjIndex, int Mode)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Mode The current MarkMode, which can have the fol-
lowing values:

0 = Mark object once. NumPasses is ignored.
1 = Mark object using the value of NumPasses.
2 = Mark object with two passes, where:
 Pass1 uses Profile0
 Pass2 uses Profile1

3 = Mark object with three passes, where:
 Pass1 uses Profile0
 Pass2 uses Profile1
 Pass3 uses Profile2

4 = Mark object with four passes, where:
 Pass1 uses Profile0
 Pass2 uses Profile1
 Pass3 uses Profile2
 Pass4 uses Profile3

Valid values: [0 ,1, 2,3,4]

Comments If the Mode is set to 2, 3 or 4, the use of pens is automatically disabled.
Use SetObjNumPasses to set the NumPasses value of an object.
Use SetObjProfile to change the profile settings of an object.

Returns S_OK if function succeeds.

See Also SetObjNumPasses, SetObjProfile

Chapter 7 Marker Library Functions

100 weldMARK™ COM Automation Server MN047 / v3.0.3

SetObjMarkOutlineFlag

Purpose Sets the MarkOutline flag of an object.

Implementation HRESULT SetObjMarkOutlineFlag (int ObjIndex, int MarkOutlineFlag)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

MarkOutlineFlag The outline flag.
Set to 1 (one) to enable outline marking.

Valid values: [0, 1]

Comments If the flag is set, the objects outline will mark.

Returns S_OK if the function succeeds.

SetObjName

Purpose Set the name of an object.

Implementation HRESULT SetObjName (int ObjIndex, BSTR ObjName)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

ObjName A name for the object.

Valid length: [1 to 256 characters]

Comments Returns S_OK if the function succeeds.

See Also GetObjName

SetObjNote

Purpose Sets the note stored in the object.

Implementation HRESULT SetObjNote (int ObjIndex, BSTR Note)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Note The note to store in the object.

Valid length: [1 to 256 characters]

Comments Returns S_OK if function succeeds.

See Also GetObjNote

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 101

SetObjNumPasses

Purpose Sets the NumPasses value of an object.

Implementation HRESULT SetObjNumPasses (int ObjIndex, int PassCount)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

PassCount The number of times to mark the object.

Valid range: [1 or greater]

Comments The use of NumPasses depends on the objects MarkMode setting. Use
GetObjMarkMode to discover the current setting, and SetObjMarkMode
to change it.

Returns S_OK if function succeeds.

See Also GetObjNumPasses, GetObjMarkMode, SetObjMarkMode

SetObjPos

Purpose Set the position of a mark object.

Implementation HRESULT SetObjPos (int ObjIndex, int HPosition, int VPosition)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

HPosition The x-coordinate of the lower-left corner of the
bounding rectangle.

Valid range: [-2,147,483,648 to 2,147,483,647]

VPosition The y-coordinate of the lower-left corner of the
bounding rectangle

Valid range: [-2,147,483,648 to 2,147,483,647]

Comments The marking field is described using a Cartesian coordinate system, with
(0,0) at the center of the field, (-32768, -32768) at the bottom left corner,
and (32767, 32767) at the top right corner. Every MarkObject has a
bounding rectangle, which describes the smallest rectangle that will fit
around the object.

Returns S_OK if the function succeeds.

Chapter 7 Marker Library Functions

102 weldMARK™ COM Automation Server MN047 / v3.0.3

SetObjProfile

Purpose Change the Profile settings for a mark object.

Implementation HRESULT SetObjProfile (int ObjIndex, int ProfileIndex,
double Markspeed, double Jumpspeed, int Jumpdelay, int Markdelay,
int Polygondelay, float Laserpower, int Laseroffdelay, int Laserondelay,
int TAxis, double T1, int T2, int Unused, int Varijumpdelay,
int Varijumplength, int Wobblesize, double Wobblefrequency,
int Autosegmentation, int Varipolydelay)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

ProfileIndex Index of Profile

Valid range: [0 to 7]

MarkSpeed Defines the speed of the laser spot while marking.

Valid range: [0 to 30000] bits/mm

Jumpspeed Defines the speed at which the mirrors jump to the
next marking vector.

Valid range: [50 to 30000] bits/mm

Jumpdelay Defines the delay after a jump and before the next
marking vector starts.

Valid range: [0 to 65500] µSec

Markdelay Defines the delay between a marking vector and a
jump vector.

Valid range: [30 to 20000] µSec

Polygondelay Defines the delay between contiguous marking vec-
tors.

Valid range: [0 to 20000] µSec

Laserpower Defines the programmed laser power for non CO2-
type lasers

Valid range: [0 to 100] % (percent)

Laserpower for CO2- type lasers is defined as:

Duty Cycle (%) = 0.1 × T2 [µs] × T1 [kHz]

Laseroffdelay Defines the delay after the last marking vector finish-
es and the laser is turned off.

Valid range: [0-65535] µSec

Laserondelay Defines the delay after a marking vector starts and
the laser is turned on.

Valid range: [0-65535] µSec

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 103

 TAxis Defines the Z position of the object. +Z is toward
the scan head and –Z away from the scan head.
Position is defined in bits and the same calibra-
tion factor is used as for x and y.

Z field size is limited by the available Linear
Translater movement. Values for Zmin and
Zmax are defined in the scan head configuration
file and can be read with GetLensCalFactorEx
command.

Units: bits

Valid range: [Zmin to Zmax]

T1 Defines the frequency of the laser modulation
signal.

Valid range: [0-250] kHz

T2 Defines the pulse width of the laser modulation
signal.

Valid range: [1-65535] µSec

Unused Set to 0.

Varijumpdelay Defines the delay after a jump and before the
next marking vector starts if variable jump delay
is in effect. Set to 0 (zero) to disable variable
jump delay.

Valid range: [0-30000] µSec

Varijumplength Defines the length of a vector, at which any vec-
tor that is longer will use the Varijumpdelay pa-
rameter, and any vector that is shorter will use
the Jumpdelay parameter.

Valid range: [0-30000] bits

Wobblesize The diameter of the circle created when the spot
is dithered. Set to 0 (zero) to disable

Valid range: [0-5000] bits

Wobblefrequency The frequency of the laser spot as it dithers
around the circle defined in Wobblesize.

Valid range: [0-6000] Hz (cycles per second)

Unused Reserved. Set to 0.

Varipolydelay Reserved. Set to 1.

Comments An object has eight profiles available, Profile0 to Profile7. When saving a
job, however, only VectorGraphic objects save all eight profiles. All other
objects only save Profile0 to Profile3.

Returns S_OK if the function succeeds.

See Also GetObjProfile, SetDefaultProfile, GetDefaultProfile

Chapter 7 Marker Library Functions

104 weldMARK™ COM Automation Server MN047 / v3.0.3

SetObjScanCardNum

Purpose Set the scan card index number of an object.

Implementation HRESULT SetObjScanCardNum (int ObjIndex, int CardNum)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

CardNum Index of scan head card

Valid range: [0 to (number of cards-1)]

Comments When multiple scan cards are installed in the computer, an objects scan
head card index controls which card is used when marking the object.

When an object is initially created, it has a CardNum of 0. If there is only
one scan card in use, there is no need to call this function.

Returns S_OK if the function succeeds.

See Also GetScanCardNum

SetObjSize

Purpose Set the size of a mark object from its center.

Implementation HRESULT SetObjSize (int ObjIndex, int HSize, int VSize)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

HSize The width of the objects bounding rectangle in the x-
axis.

Valid range: [0-65535]

VSize The width of the objects bounding rectangle in the y-
axis.

Valid range: [0-65535]

Comments The marking field is described using a Cartesian coordinate system, with
(0,0) at the center of the field, (-32768, -32768) at the bottom left corner,
and (32767, 32767) at the top right corner.

Every MarkObject has a bounding rectangle, which describes the small-
est rectangle that will fit around the object.

Returns S_OK if the function succeeds.

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 105

SetObjToRect

Purpose Set the position and size of a mark object.

Implementation HRESULT SetObjRect (int ObjIndex, float* Left, float* Top, float* Right,
float* Bottom)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Left The x-coordinate of the upper-left corner of the bound-
ing rectangle.

Valid range: unlimited value. Keep within [0 to 65535]

Top The y-coordinate of the upper-left corner of the bound-
ing rectangle

Valid range: unlimited value. Keep within [0 to 65535]

Right The x-coordinate of the lower-right corner of the
bounding rectangle.

Valid range: unlimited value. Keep within [0 to 65535]

Bottom The y-coordinate of the lower-right corner of the
bounding rectangle

Valid range: unlimited value. Keep within [0 to 65535]

Comments The marking field is described using a Cartesian coordinate system, with
(0, 0) at the center of the field, (-32768, -32768) at the bottom left corner,
and (32767, 32767) at the top right corner.

Every MarkObject has a bounding rectangle, which describes the small-
est rectangle that will fit around the object.

Returns S_OK if the function succeeds.

See Also GetAllObjRect, GetObjRect

SetObjUsePensFlag

Purpose Sets the use pens flag of an object.

Implementation HRESULT SetObjUsePensFlag (int ObjIndex, int Flag)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Flag The pens flag.

[Valid values:0 or 1]

Comments If the object contains pen information (usually in *.plt files), the Profile
used to mark the object is selected by the current pen.

Returns S_OK if function succeeds.

Chapter 7 Marker Library Functions

106 weldMARK™ COM Automation Server MN047 / v3.0.3

SetPolygonAttributes

Purpose Set the attributes of a polygon object.

Implementation HRESULT SetPolygonAttributes (int ObjIndex, int StartAngle,
int EndAngle, int Sides)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Returns StartAngle The starting angular direction of the polygon. 0 (zero)
degrees corresponds to the 12:00 position.

Valid range: [0 to 360] degrees

EndAngle The ending angular direction of the polygon. 360
degrees corresponds to the 12:00 position

Valid range: [0 to 360] degrees

NumSides The number of straight-line segments in the polygon.

Valid range: [3 to 10000]

Comments Returns S_OK if the function succeeds.

See Also GetPolygonAttributes

SetProcessEnabledWord

Purpose Set the PROCESSENABLED ports on the Standard I/O card.

Implementation HRESULT SetProcessEnabledWord (int WordValue)

Parameters WordValue Word value to be used to set the ports.

Valid range: [0 to 63]

Comments On the Standard I/O card, there are six bits that make up the
PROCESSENABLED ports, hence a range of 0-63.

Use WordValue to set the corresponding bits. For example, setting
WordValue to 0 will set all the ports to false. Setting WordValue to 2 will
set port 1 and port 2 to true. Setting WordValue to 63 will set all ports to
true.

The Standard I/O card uses reverse logic, so a true will set the port to
ground. There must be a Standard I/O card installed for this function to
succeed.

Returns S_OK if the function succeeds.

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 107

SetScanCardOutput

Purpose Set a 16-bit port value on the SP-ICE card.

Implementation HRESULT SetScanCardOutput (int CardNum, int Offset, int Word,
int Unused)

Parameters CardNum Index of scan head card.

Valid range: [0 to (number of cards-1)]

Offset The valid port address to set. See the SP-ICE
card manual for more details.

Valid values: [see SP-ICE card manual]

Word The lower 16 bits of Word are used to set the
specified port. The upper 16 bits are ignored.

Valid values: [0-65535]

Comments This command is valid only for the SP-ICE scan head cards.

Returns S_OK if the function succeeds

See Also GetScanCardInput

Chapter 7 Marker Library Functions

108 weldMARK™ COM Automation Server MN047 / v3.0.3

SetTextAttributes

Purpose Set the attributes of a text object.

Implementation HRESULT SetTextAttributes (int ObjIndex, BSTR FontName,
int Orientation, int Kerning, int Leading, int Styles, int ParagraphStyle,
int PulseCount)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

FontName The name of the font.

Valid value: [Any Windows TrueType font i.e. Arial,
or installed Laser Font]

Orientation An integer value representing the physical orientation
of singleline text objects. Orientation can contain one
of the following values:

1 = Horizontal
2 = Vertical
3 = Radial

Valid values: [1,2,3]

Kerning The added spacing between each character.

Valid range: [-2000 to 2000] % (percent) of charac-
ter width.

Leading The added spacing between each line in paragraph
text.

Valid range: [-2000 to 2000] % (percent) of charac-
ter width.

Styles The font style (only TT-Fonts).

Styles can contain a combination of the following
values:

0 = Normal text
1 = Bold
2 = Italics

Valid values: [0 ,1, 2]

ParagraphStyle The paragraph justification. For multiline text ob-
jects. It can be one of the following values:

0 = LeftJustify
1 = RightJustify
2 = CenterJustify

Valid values: [0 ,1, 2]

PulseCount The number of laser pulses fired at each dot using the
current laser frequency and pulse width settings.(For
Dot-Marking)

Valid range: [1000 to 10000]
(0 deactivates Dot-Marking)

Returns Returns S_OK if the function succeeds.

Comments Only for TT-Fonts.

See Also GetTextAttributes

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 109

SetVectorGraphicAttributes

Purpose Set the attributes of a vector graphic object.

Implementation HRESULT SetVectorGraphicAttributes (int ObjIndex, int PulseCount)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

PulseCount The number of laser pulses fired at each point using
the current laser frequency and pulse width settings.

Valid range: [1000 to 10000]
(0 deactivates Dot-Marking)

Comments Not all vector graphic file formats support a point entity. If the vector
graphic file contains point entities, the PulseCount parameter sets all
point entities within the vector graphic to the same value.

Returns S_OK if the function succeeds.

See Also SetVectorGraphicAttributes

SetUserOutWord

Purpose Set the Word value of the USEROUT ports.

Implementation HRESULT SetUserOutWord (int WordValue)

Parameters Word Value of the word to set the USEROUT ports.

Valid range: [0 to 63]

Comments On the Standard I/O card, there are six bits that make up the USEROUT
ports, hence a range of 0-63.

Use WordValue to set the corresponding bits. For example, setting
WordValue to 0 will set all the ports to false.

Setting WordValue to 3 will set port 1 and port 2 to true.
Setting WordValue to 63 will set all ports to true.

The Standard I/O card uses reverse logic, so a true will set the port to
ground. There must be a Standard I/O card installed for this function to
succeed.

Returns S_OK if the function succeeds.

Chapter 7 Marker Library Functions

110 weldMARK™ COM Automation Server MN047 / v3.0.3

ShowTrayIcon

Purpose Show or hide the COMServer system notification icon.

Implementation HRESULT ShowTrayIcon (int Show, int Protect)

Parameters Show The show icon flag. Set to 1 to show the icon, 0 to
hide it.

Valid values: [0 or 1]

Protect The protect flag.
When set to 1, if the icon is visible, the context menu
is not available.
When set to 0, the context menu is available, and the
COMServer can be terminated from the context
menu.

Valid values: [0 or 1]

Comments Use this command when initially debugging your application to show the
icon. When ready for release, the system notification icon should be pro-
tected or hidden so the user cannot terminate the COMServer manually.

Returns S_OK if the function succeeds.

SkewObj

Purpose Add a skew (shear) to an object.

Implementation HRESULT SkewObj (int ObjIndex, float XSkew, float YSkew)

Parameters ObjIndex Index of object in the ObjectList

Valid range: [0 to (number of objects-1)]

Xskew The amount of Xskew.

Valid range: [- 180 to 180] degrees

Yskew The amount of Yskew.

Valid range: [- 180 to 180] degrees

Comments If XSkew and/or YSkew are non-zero, the object will shear in that axis.

Returns S_OK if the function succeeds.

TerminateMark

Purpose Immediately stop the marking process.

Implementation HRESULT TerminateMark (void)

Comments Returns S_OK if the function succeeds.

Marker Library Functions Chapter 7

MN047 / v3.0.3 weldMARK™ COM Automation Server 111

TurnLaserOff

Purpose Immediately turn the laser off.

Implementation HRESULT TurnLaserOff (int CardNum)

Parameters CardNum Index of scan head card

Valid range: [0 to (number of cards-1)]

Comments This command is usually preceded by the command TurnLaserOn.
CardNum is the 0 based index of the scan head card to query.

Returns S_OK if the function succeeds.

See Also TurnLaserOn

TurnLaserOn

Purpose Position the laser beam and turn the laser on indefinitely.

Implementation HRESULT TurnLaserOn (int CardNum, float LaserPower,
float Frequency, int PulseWidth, int XPosition, int YPosition)

Parameters CardNum Index of scan head card

Valid range: [0 to (number of cards-1)]

LaserPower Defines the programmed laser power.

Valid range: [1 to 100] % (percent)

Frequency Defines the frequency of the laser modulation sig-
nal.

Valid range: [0.02 to 50.0] kHz

PulseWidth Defines the pulse width of the laser modulation
signal.

Valid range: [2 to 65535] µSec

XPosition The X coordinate position of the laser spot.

Valid range: [-32768 to 32767] bits

YPosition The Y coordinate position of the laser spot.

Valid range: [-32768 to 32767] bits

Comments This command must be followed by a call to TurnLaserOff.

Before the laser turns on, the spot is moved to XPosition, YPosition,
using the current JumpSpeed and JumpDelay. These coordinate points
are in bits.

The marking field is described using a Cartesian coordinate system, with
(0,0) at the center of the field, (-32768, -32768) at the bottom left corner,
and (32767, 32767) at the top right corner.

Returns S_OK if the function succeeds.

See Also TurnLaserOff

Chapter 8 Example Code

112 weldMARK™ COM Automation Server MN047 / v3.0.3

8 EXAMPLE CODE
An example program is provided to illustrate how to initiate a session with the weldMARK™
Automate object, load a pre-defined job, and then mark all objects in the job to the default
scan head card.

8.1 C++ Example
// Initialize Windows COM libraries

::CoInitialize(NULL);

// Create an interface pointer

IAutomate* pMarker=NULL;

::CoCreateInstance(CLSID_Automate,

 NULL,

 CLSCTX_LOCAL_SERVER,

 IID_IAutomate,

 reinterpret_cast<void**>(&pMarker));

// Return value variable

HRESULT hr;

//Make sure there is a scan head card installed in computer

int count;

pMarker ->GetScanCardCount (&count);

if (count == 0)

 return Error;

int newjobindex;

try

 {

 // Load a presaved job from disk

 BSTR filename = ”c:\\test.wlj”;

 hr = pMarker ->LoadJobFromFile (filename, &newjobindex);

 if (FAILED(hr))

 {

 Application->MessageBox("Error","",MB_OK);

 Application->Terminate();

 }

 // Find out how many marking objects are in the job

 int objcount;

 hr = pMarker ->GetObjCount (&objcount);

 if (FAILED(hr))

 {

 Application->MessageBox("Error","",MB_OK);

 Application->Terminate();

 }

 // Make sure application is not currently marking

 int busy=1;

 while (busy==1)

 {

 hr = pMarker ->GetBusyStatus (0,&busy);

 if (FAILED(hr))

 {

 Application->MessageBox("Error","",MB_OK);

 Application->Terminate();

 }

 }

 busy=1;

 // Mark all objects in job with 90 degree rotation

 for (int i=0;i<objcount;i++)

 {

Example Code Chapter 8

MN047 / v3.0.3 weldMARK™ COM Automation Server 113

 // Make sure application is not currently marking

 int busy=1;

 while (busy == 1)

 {

 hr = pMarker ->GetBusyStatus (cardnum ,&busy);

 if (FAILED(hr))

 {

 Application->MessageBox("Error","",MB_OK);

 Application->Terminate();

 }

 }

 busy=1;

 // Mark object with Profile0

 hr = pMarker ->MarkObj (cardnum,i,90.0);

 if (FAILED(hr))

 {

 Application->MessageBox("Error","",MB_OK);

 Application->Terminate();

 }

 }

 }

catch (Exception& E)

 {

 return Error;

Index

114 weldMARK™ COM Automation Server MN047 / v3.0.3

INDEX

A

ActiveX 6, 7
AttachToMarker 30
Automation 5, 7, 8

C

CenterObj 30
CloseJob 30
CoClass 6
COM 6
COM object 6
Component Object Model 6

D

DeleteAllObj 30
DeleteObj 31
DownloadAllObj 31
DownloadObj 32

E

EnableLaser 32
Extendet 21

G

GetAllObjRect 33
GetBarcodeAttributes 34
GetBarcodeAttributesEx 34
GetBitmapAttributes 35
GetBitmapGrayScaleMode 36
GetBitmapGrayScaleMode 84
GetBmpEndOfLineDelay 36
GetBmpLineShiftCorrection 36
GetBmpSkippedPixelTreshold 37
GetBusyStatus 37
GetBusyStatusEx 38
GetDefaultProfile 39
GetDrillAttributes 41
GetJobCorrFile 41
GetJobCorrFlag 41
GetJobCount 41
GetLaserConfigFile 42
GetLaserName 42
GetLaserPowerMinMax 42
GetLensCalFactor 43
GetLensCalFactorEx 44
GetLensCalFile 44
GetMOTFConfig 45
GetObjCharString 45
GetObjCount 46
GetObjFill 46
GetObjFillEx 46
GetObjFillList 47
GetObjGraphicFile 47
GetObjMarkFillFlag 48
GetObjMarkMode 49
GetObjMarkOutlineFlag 48
GetObjMemSize 48

GetObjName 49
GetObjNote 50
GetObjNumPasses 50
GetObjPens 51
GetObjProfile 52
GetObjRect 54
GetObjScanCardNum 54
GetObjType 55
GetObjTypeString 56
GetObjUsePensFlag 56
GetObjVectorList 57
GetPolygonAttributes 57
GetReadStatusWord 58
GetScanCardCapacity 59
GetScanCardCount 59
GetScanCardInput 60
GetScanHeadCount 60
GetStartProcessBit 60
GetTextAttributes 61
GetUserInWord 62
GetVectorGraphicAttributes 62
GoToXY 63

H

hardware dongle 9
HomeAxes 63
HomeLTAxis 63

I

in-process server 7
IPG 26
IsIOCardInstalled 64
IsObjOutOfBounds 64

L

LoadJobFromFile 64
LoadLaserConfigFile 65
LoadLensCalFile 65
local server 7

M

Manufacturer 5
MarkAllObj 66
MarkObj 67
MarkObjEx 68
MoveObjInList 68

N

NewBarcode 69
NewBitmap 69
NewDrill 70
NewJob 70
NewLine 70
NewPolygon 71
NewRect 71
NewText 72
NewVectorGraphic 72

 Index

MN047 / v3.0.3 weldMARK™ COM Automation Server 115

O

OffsetObj 73

R

ReleaseMarker 73
remote server 7
RotateObj 74
RotateObjEx 74

S

SaveJobToFile 75
ScaleObj 76
ScanCardCommand 77
ScanCardExecute 79
SetActiveJob 80
SetBarcodeAttributes 80
SetBarcodeAttributesEx 80
SetBitmapAttributes 83
SetBmpEndOfLineDelay 84
SetBmpLineShiftCorrection 85
SetBmpSkippedPixelTreshold 85
SetBusyReadyBit 86
SetDefaultProfile 87
SetDrillAttributes 89
SetMarkInProgressBit 89
SetMOTFConfig 90
SetObjCharString 90

SetObjFill 91
SetObjFillEx 91
SetObjGraphicFile 92
SetObjMarkFillFlag 92
SetObjMarkMode 93
SetObjMarkOutlineFlag 94
SetObjName 94
SetObjNote 94
SetObjNumPasses 95
SetObjPos 95
SetObjProfile 96
SetObjScanCardNum 98
SetObjSize 98
SetObjToRect 99
SetObjUsePensFlag 99
SetPolygonAttributes 100
SetProcessEnabledWord 100
SetScanCardOutput 101
SetTextAttributes 102
SetUserOutWord 103
SetVectorGraphicAttributes 103
ShowTrayIcon 104
SkewObj 104
SPI 26

T

TerminateMark 104
TurnLaserOff 105
TurnLaserOn 105

	weldMARK™ COM Automation Server
	1 Introduction
	1.1 About this Manual
	1.2 Technical Support
	1.3 Manufacturer

	2 COM-Interface – Background
	2.1 Overview of COM
	2.2 COM Objects
	2.3 COM and ActiveX Servers
	2.4 Automation
	2.5 Writing the Automation Controller

	3 Requirements and Installation
	3.1 System Requirements
	3.2 Hardware Dongle Installation
	3.3 Software Installation
	3.4 Registering the weldMARK™ Automation Server Object

	4 weldMARK™® Automation Object Model Concepts
	4.1 Overview
	4.2 Creating the COM Object
	4.2.1 C++ Example
	4.2.2 Borland C++ Builder 5.0 Example
	4.2.3 Visual C++ 6.0 Example
	4.2.4 Example for C#.NET
	4.2.5 Example for VB.NET
	4.2.6 Visual Basic 6.0 Example
	4.2.7 Example for VBScript

	4.3 Using the Marker Library
	4.3.1 Overview
	4.3.2 Initializing the Marker Library
	4.3.3 Working with JobObjects
	4.3.4 Working with MarkObjects
	4.3.5 Working with the Standard I/O card

	4.4 Error Handling
	4.4.1 Visual Basic Error Client
	4.4.2 C++ Error Client

	4.5 Extended Error Handling

	5 Focus Shifter
	5.1 Loading Scan Head Configuration file
	5.2 Creating Objects
	5.3 Changed/New commands

	6 Pulsed IPG- and SPI-Laser
	6.1 Initialization
	6.2 Mark_In_Progress signal
	6.3 Adjusting laser parameters and setting the power
	6.4 Checking for Errors of pulsed IPG/SPI Lasers
	6.5 Resetting Errors of pulsed IPG/SPI Lasers

	7 Marker Library Functions
	7.1 Function Overview
	7.2 Functions

	8 Example Code
	8.1 C++ Example
	Untitled

